
Copyright

by

Jeremy Michael Stober

2015

The Dissertation Committee for Jeremy Michael Stober

certifies that this is the approved version of the following dissertation:

Sensorimotor Embedding:
A Developmental Approach to Learning Geometry

Committee:

Risto Miikkulainen, Supervisor

Benjamin Kuipers, Co-Supervisor

Kristen Grauman

Peter Stone

Inderjit Dhillon

Sensorimotor Embedding:

A Developmental Approach to Learning Geometry

by

Jeremy Michael Stober, B.A.; M.S. Comp. Sci.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2015

For Anastasia.

Acknowledgments

I’d like to thank Risto Miikkulainen and Benjamin Kuipers, without whose super-

vision this thesis would not exist. I would also like to thank the members of my

committee, Kristen Grauman, Peter Stone, and Inderjit Dhillon, who waited pa-

tiently while I worked out the kinks of this research. I’d like to also thank the

members of The Golden Turtle Club, who reminded me that while I might have

been behind, I was not alone, and extend thanks to my colleagues at Apple, who

had the good grace to not ask about my progress while also making every workday

a pleasure.

Anastasia and Alexander, you have kept me going as you have kept me

grounded. Now that this thesis is finally moving out, we will have even more room

for a new addition.

Jeremy M. Stober

The University of Texas at Austin

May 2015

v

Sensorimotor Embedding:

A Developmental Approach to Learning Geometry

Publication No.

Jeremy Michael Stober, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Risto Miikkulainen

Co-Supervisor: Benjamin Kuipers

A human infant facing the blooming, buzzing confusion of the senses grows up to

be an adult with common-sense knowledge of geometry; this knowledge then allows

her to describe the shapes of objects, the layouts of places, and the relative locations

of things naturally and effortlessly. In robotics, such knowledge is usually built in

by a human designer who needs to solve complex engineering problems of sensor

calibration and inference. In contrast, this dissertation presents a model for how

autonomous agents can form an understanding of geometry the same way infants

do: by learning from early unstructured sensorimotor experience.

Through a framework called sensorimotor embedding, an agent reconstructs

knowledge of its own sensor structure, the local geometry of the world, and the pose

of objects within the world. The validity of this knowledge is demonstrated directly

through Procrustes analysis and indirectly by using it to solve the mountain car

task with different morphologies. The dissertation demonstrates how sensorimotor

vi

embedding can serve as a robust approach for acquiring geometric knowledge.

vii

Contents

Acknowledgments v

Abstract vi

Chapter 1 Introduction 1

1.1 Motivation . 2

1.1.1 Geometry in the Liberal Arts 2

1.1.2 Geometry in Psychology . 3

1.1.3 Geometry in Robotics . 6

1.2 Challenge . 7

1.3 Approach . 9

1.4 Outline . 9

Chapter 2 Background and Related Work 12

2.1 Developmental Robotics . 12

2.1.1 Introduction . 12

2.1.2 Bootstrap Learning . 13

2.1.3 Related Work . 15

2.1.4 Conclusion . 17

2.2 Reinforcement Learning . 17

2.2.1 Introduction . 17

viii

2.2.2 Markov Decision Process . 18

2.2.3 Least Squares Policy Iteration 19

2.2.4 Tile Coding . 22

2.2.5 Related Work . 23

2.2.6 Conclusion . 24

2.3 Manifold Learning . 24

2.3.1 Introduction . 24

2.3.2 Formal Manifold Definition 25

2.3.3 Linear Methods . 26

2.3.4 Isomap . 29

2.3.5 Maximum Variance Unfolding 31

2.3.6 Distance Functions . 32

2.3.7 Related Work . 34

2.3.8 Conclusion . 37

2.4 Conclusion . 37

Chapter 3 Sensorimotor Embedding 38

3.1 Formal Definition . 38

3.1.1 Learning a Policy . 40

3.1.2 Action Traces . 40

3.1.3 Comparing Action Traces . 41

3.1.4 Applying Multidimensional Scaling 43

3.2 Evaluating Sensorimotor Embedding 44

3.2.1 Procrustes Analysis . 44

3.2.2 Feature Utility . 48

3.2.3 Distribution of Eigenvalues 48

3.3 Discussion . 50

3.4 Conclusion . 53

ix

Chapter 4 Learning the Geometry of the Foveated Retina 54

4.1 Motivation . 54

4.2 A Foveated Retina Model . 56

4.3 Learning Saccades . 58

4.4 Experiments . 60

4.4.1 Simulation Experiment . 61

4.4.2 Lesion and Vision Reversal Experiments 63

4.4.3 Natural Scene and Pan/Tilt Experiments 65

4.5 Discussion . 67

4.6 Conclusion . 68

Chapter 5 Learning Robot Position 74

5.1 Gridworld Experiments . 75

5.2 Roving Eye . 79

5.3 Discussion . 84

5.4 Conclusion . 85

Chapter 6 Learning Object Pose 89

6.1 Motivation . 89

6.2 Setup . 90

6.3 Results . 93

6.4 Discussion . 95

6.5 Conclusion . 98

Chapter 7 Learning Depth 99

7.1 Motivation . 99

7.2 Setup . 100

7.2.1 Vergence . 100

7.2.2 Stereo Pairs . 101

x

7.2.3 Simulation . 106

7.3 Results . 108

7.3.1 Stereo Pairs . 108

7.3.2 Simulation . 109

7.4 Discussion . 111

7.5 Conclusion . 115

Chapter 8 Visual Mountain Car 116

8.1 Motivation . 116

8.2 Setup . 117

8.3 Results . 120

8.4 Discussion . 124

8.5 Conclusion . 124

Chapter 9 Discussion and Future Work 126

9.1 Perceptual Goals and Development 126

9.2 Cognitive Models of Geometry . 127

9.3 Human Models of Eye Motion . 129

9.4 Probabilistic Sensorimotor Embedding 130

9.5 Variations of Sensorimotor Embedding 131

9.6 Visualization and Option Discovery 132

9.7 Communicating Geometric Knowledge 133

9.8 Conclusion . 134

Chapter 10 Conclusions 136

10.1 Contributions . 136

10.2 Conclusion . 138

Bibliography 139

xi

List of Tables

4.1 Saccade Accuracy . 66

5.1 Roving Eye Experimental Results . 85

xii

List of Figures

1.1 Perspective Plate #28 . 2

1.2 Inverting Vision Experiments . 5

2.1 Agent-Environment System . 18

2.2 Swiss Roll Example . 29

2.3 Isomap Example . 30

2.4 Action Respecting Embedding . 36

3.1 Procrustes Error Example . 47

3.2 Scree Plot . 49

3.3 Development of Viewpoint Bias . 51

3.4 Visual Saliency Example . 52

4.1 Fovea Model . 56

4.2 Learned Sensor Geometry in Simulation 61

4.3 Saccade Policy Training . 69

4.4 Lesion Results . 70

4.5 Vision Reversal . 71

4.6 Natural Scene Image Results . 72

4.7 Pan/Tilt Results . 73

5.1 Gridworld Domains . 76

xiii

5.2 Random Walk Policy . 77

5.3 Optimal Policy . 78

5.4 Geometric Error and Policy Improvement 79

5.5 Additional Gridworld Results . 80

5.6 Embodied Isomap Gridworld . 81

5.7 Sensorimotor Embedding Gridworld 82

5.8 Scree Diagram for Roving Eye Domain 84

5.9 Roving Eye Domain . 86

5.10 Example Robot Trajectories . 87

5.11 Example Embeddings of Robot Positions 88

6.1 Object Rotation and Gradient . 92

6.2 Object Pose Results . 94

6.3 Procrustes Error and Eigenvalue Comparison 95

6.4 Pose Alignment Task . 96

6.5 Sensorimotor Pipeline . 97

7.1 Stereo Pair Vergence . 102

7.2 Foveated Filter Examples . 104

7.3 Saliency Map Examples . 105

7.4 Simulated Gazebo Robot . 107

7.5 Fovea Stereo Difference . 109

7.6 Stereo Occlusion . 110

7.7 Simulated Image Difference . 111

7.8 Learning a Vergence Policy . 112

7.9 Sensorimotor Embedding Features in Simulation 113

7.10 Eye Musculature . 114

8.1 Mountain Car Domain . 119

xiv

8.2 Sensorimotor Features for Mountain Car 121

8.3 Alternate Robot Morphologies . 122

8.4 Alternate Robot Performance . 123

9.1 View Bias Changes During Training 128

9.2 Policy Visualization Example . 133

9.3 Option Discovery with Sensorimotor Embedding 135

xv

Chapter 1

Introduction

The doctrine that we could not perceive the world around us unless we

already had the concept of space is nonsense. It is quite the other way

around: We could not conceive of empty space unless we could see the

ground under our feet and the sky above. Space is a myth, a ghost, a

fiction for geometers. –J. J. Gibson The Ecological Approach to Visual

Perception

If asked, you could probably describe where you are in the building, in your

office, or relative to your desk. This ability to answer where questions as adults

is natural, but if we were to rewind time and consider ourselves as newborns, this

knowledge would seem impossibly out of reach. Between that time and now, we

acquired knowledge of the geometry of our local space. This thesis introduces a for-

mal, algorithmic, developmental approach to acquiring geometric knowledge called

sensorimotor embedding. This approach allows artificial agents to acquire geomet-

ric knowledge from experience. In this introduction, the importance of geometric

knowledge for different disciplines is discussed along with examples that motivate

the development of sensorimotor embedding. This is followed by a discussion of the

challenges addressed by this thesis, and an overview of the approach presented in

1

this dissertation. The last section provides an outline of the remaining chapters.

1.1 Motivation

1.1.1 Geometry in the Liberal Arts

Not everything to do with the geometry of local space is easy even for adults. The

difficulty of representing space in art points to a gap between human intuition regard-

ing perception of geometry and our scientific understanding. For thousands of years

of recorded history humans struggled to study and formalize what we all understand

inherently and immediately by simply observing the world. It took an advance in

scientific understanding to finally revolutionize artistic representations of space.

The very first depictions of depth in paintings appeared in the work of Filippo

Brunelleschi sometime before his death in 1446. This work, as well as other later

attempts at capturing perspective, such as Vredeman de Vries perspective plate

number 28 shown in Figure 1.1, were influenced by early Renaissance studies of

Optics (e.g. Alhazen’s Deli Aspecti [1]).

Figure 1.1: Perspective Plate #28. Vredeman de Vries in 1604. Early efforts to

model three dimensions in art came about after advances in the study of optics.

The mathematical study of geometry preceded these artistic advancements

2

by a number of centuries, from the first proof of the Pythagorean theorem in the

seventh century BC through the discovery of non-euclidean geometries in the 19th

century. Euclid’s Elements laid out what was known about geometry in a system of

axioms, theorems, and proofs. The parallel postulate is a famous example of how

intuition about obvious geometric postulates can turn out to be incomplete.

If a straight line falls on two straight lines in such a manner that the

interior angles on the same side are together less than two right angles,

then the straight lines, if produced indefinitely, meet on that side on

which the angles are less than the two right angles.

The parallel postulate was qualitatively more complex than the other postu-

lates. Since the postulate seemed empirically true, many geometers attempted to

prove that this postulate could be derived from the proceeding four, simpler propo-

sitions. The discovery of consistent non-Euclidean geometries opened up new areas

of mathematics, but also created a schism between the mathematical study of geom-

etry and our perceptions. Since there exist multiple consistent geometries, it was no

longer reasonable to assume that our knowledge of geometry could be deduced in-

dependent of experience. This distinction is important for this thesis. The methods

and results discussed here are not concerned with the formal mathematical study of

geometry. Sensorimotor embedding is a theory about how geometric knowledge can

be acquired through perception, and reasoned about using the naive, common sense

methods.

1.1.2 Geometry in Psychology

Our informal knowledge of geometry is more surprising when you consider the com-

plex process involved in translating perceptions into mental states. A straight line

in the world must first be detected by a concave set of receptor cells in the retina,

transformed into neural impulses, then transmitted to the visual cortex for further

3

processing. This complexity gave rise to several theories for grounding mental states

as sensorimotor contingencies or motion based grounding [13, 46].

At some point in development, children learn geometric concepts. Children

can pass reasoning tasks requiring Euclidean geometry at six years of age, during

Piaget’s concrete operational phase [63]. Piaget’s theory of cognitive develop-

ment provides a useful framework for thinking about how geometric knowledge might

come to be during the process of cognitive development. And operational geometric

thinking in children must depend on foundational knowledge acquired during the

sensorimotor and pre-operational stages of development [52].

Inspired by Piaget’s sensorimotor stage of development, agents using senso-

rimotor embedding acquire geometric knowledge directly from sensorimotor experi-

ence.

Humans are remarkably adaptable in the face of sensorimotor change. For

example, in a famous series of experiments during the 1950s, Erismann and Kohler

filmed themselves doing everyday tasks using vision inverting goggles [78]. An ex-

periment shown in Figure 1.2 shows Erismann attempting to navigate an inclined

plane while wearing inverting goggles. The ability to function after a period of adap-

tation despite a drastic change in the relationship between the visual sense and the

state of the world epitomizes the advantage that humans have over even the most

sophisticated robots.

These early vision inverting experiments formed the basis of a months long

experiment in wearing inverting goggles undertaken by Hubert Dolezal. In Living in

a World Transformed, Dolezal describes the stages of adaptation to his transformed

visual surroundings, advancing so far as to consider the inverted world “normal” and

being able to undertake daily tasks without difficulty [15]. After taking the goggles

off, there was a similar, though shorter period of adaptation to normal vision.

Being able to adapt to a drastic change in the properties of a sensor is a

4

Figure 1.2: Inverting Vision Experiments. Inverted vision experiments show

that this sensory change disrupts basic skills in the short term, but humans can

eventually adapt to such changes.

significant skill. Consider attempting the same experiment on the most advanced

robots today. Would a robot be able to detect the change or adapt to it over time?

Given advance notice, an engineering solution could be found, yet this ability of

humans to adapt to sensory changes happens naturally.

This example is especially important because it involves a change to the

geometry of the visual field. Any mechanism that purports to learn geometry from

experience should be able to pass the inverted goggles test. Sensorimotor embedding

provides a solution as shown in Chapter 4. People have also demonstrated the ability

to adapt to reduced vision or blindness. When simulating these same sensory deficits

5

on robots, for example simulating macular degeneration or central vision loss by

artificially restricting a robot’s field of view, even today’s most advanced robots

fail in any programmed functions that depend on these senses. This sharp contrast

between human adaptation and robot adaption is a key motivation for the approach

in this dissertation.

1.1.3 Geometry in Robotics

The interplay of psychological and mathematical approaches to the study of geomet-

ric knowledge serve as the background for another important research area. A robot

is a collection of sensors capable of perceiving the environment and effectors capable

of making physical changes to the environment. These changes could involve manip-

ulating objects or navigating a path. Typical robots in common laboratory use have

camera, laser, or sonar sensors, appendages like robot arms capable of manipulating

physical objects, and wheels or legs capable of moving the robot. For autonomous

robots, the ability to maintain accurate internal representations of the state of the

world depends crucially on the acquisition of geometric knowledge of all kinds.

For today’s most advanced robotic systems, unlike their biological counter-

parts, the ultimate source of knowledge about how to make geometric estimates is

the programmer responsible for designing the system. This lack of autonomy in the

acquisition of geometric knowledge can sometimes lead to problems. For example,

consider the case of the Rosetta space probe. On November 12th, 2014 European

Space Agency’s Rosetta spacecraft landed a probe on a comet for the first time. Af-

ter a decade, and 500 million kilometers, harpoons meant to secure the probe to the

comet in the low gravity environment, failed to properly deploy. According to subse-

quent analysis the probe bounced twice, finally coming to rest in an unknown region

of the comet’s surface. Fortunately, the probe was able to complete a substantial

portion of its research mission, though the length of its mission was cut short since

6

in its new orientation, the solar panels did not receive enough sunlight to supply the

batteries.

A crucial question puzzled scientists after the probe came to rest on the rock –

where was it? Answering this question from so far away was a substantial challenge.

Analyzing a specific sensor on the lander, the Rosetta Lander Magnetometer and

Plasma Monitor or ROMAP, gave some clues as to the probe’s trajectory [2]. When

a robot is so far away, our ability to reason about the robot’s position is restricted

to what is available from the robot’s sensors. But what if it were possible to just ask

the lander where it was? Some of the necessary knowledge needed for a response will

be provided by sensorimotor embedding. After such an unexpected event altered the

position of the probe, an adaptive, autonomous system that could learn (or relearn)

to estimate its position would have been of great use to the mission team.

Autonomous robots are expected to operate independently in the environ-

ment, performing useful tasks and reacting to changes without any input from an

operator. This creates several problems that must be solved by the robot’s controlling

routines. For example, unless operating within a tightly controlled environment, the

robot must be able to adapt to many kinds of unexpected changes. An autonomous

learning robot is a robot that, in addition to acting independently in the world, is

also capable of learning new skills and concepts. This includes robots that undergo

autonomous mental development, a process inspired by the way humans and

animals develop over a lifetime [81]. The process of autonomous mental development

is online, continuous, and lifelong. Sensorimotor embedding provides a method for

autonomous learning of geometry from online experience.

1.2 Challenge

Autonomous mental development is clearly evident in natural systems, and au-

tonomous learning would significantly improve the ability of artificial systems to

7

adapt to new environments and acquire new and useful skills. In addition, com-

putational models for artificial development may provide a deeper understanding

of developmental processes in natural systems. One problem for autonomous men-

tal development is how to build a foundation of knowledge from raw sensorimotor

experience. This is the bootstrap learning problem.

Bootstrap Learning Problem. Create a general learning program that, when run

on a robot, is able to learn useful concepts from raw sensorimotor experience.

Bootstrap learning programs that can run effectively on a wide variety of

robots without customization would require less engineering effort to port between

different platforms. If the specifics of the physical robot are not part of the program,

but learned from experience, then the program should generalize well over a wide

variety of possible robots. Even if properties of the robot architecture are built into

the program, wear and tear can change the properties of the robot over time. These

kinds of changes over time need to be discovered by the robot.

In bootstrapping’s most stringent form, even essential facts, like the dimen-

sion of space, are not necessarily available. Discovering the number of dimensions of

space from a stream of input data is a difficult task. But embedded in this challenge

problem are more practical difficulties. For example, how can a robot learn the pro-

portions of its own body? How can it properly calibrate its sensors (or know that

they need calibrating)? Can the agent learn basic skills that allow it to control the

input stream of data in predictable ways? These questions inspired the geometry

learning problem.

Geometry Learning Problem. Design a developmental process that, starting

only with a basic set sensor inputs and motor outputs, progresses through a

period of sensorimotor development that results in knowledge of body, sensor

and object location and geometry [71].

8

If a robot can autonomously learn about its own geometry then less effort is

required by the robot designers. If this knowledge can be learned, then it can be

relearned, allowing robots to adapt to physical changes.

1.3 Approach

This thesis presents a viable method for learning geometry. Sensorimotor embedding,

the core algorithm in this thesis, allows an agent to learn about geometry in a

way that is robust to initial conditions, will work in a variety of starting body

configurations, and requires minimal prior knowledge. Sensorimotor embedding is

an algorithm that allows embodied agents to discover structure in high-dimensional

sensor streams through interactive experience. The algorithm was developed to

address the problem of a robot trying to learn the geometric structure of its sensors,

motors, and the surrounding world. Coincident with the process of learning skills, a

robot can also learn about the underlying geometry of the world using sensorimotor

embedding.

For many sensorimotor tasks, the actions an agent takes change the local

space. An infant waving her hands is creating visual targets with varying position

in the infant’s egocentric frame of reference. The actions that change the position

of an infant’s hands directly impact the geometric relationship between the infant’s

eyes and hands. This leads to a simple but powerful observation, that the actions

of an agent are an important source of information about these local geometric

relationships. Through careful analysis of action sequences, sensorimotor embedding

is able to construct features that relate to geometric properties of the external world.

1.4 Outline

This dissertation is organized as follows:

9

Chapter 2 presents a self-contained introduction to reinforcement learning,

manifold learning, and developmental robotics. A basic understanding of reinforce-

ment learning and manifold learning are necessary for understanding sensorimotor

embedding. This chapter includes a description of several reinforcement learning

and manifold learning algorithms used in this thesis. An overview of related work in

the areas of developmental robotics, reinforcement learning, and manifold learning

are also included. Important results in these areas are discussed and provide context

for the development of sensorimotor embedding.

Chapter 3 presents sensorimotor embedding in formal detail. This chapter

also includes a discussion of evaluation methods that are used in experimental work

presented in later chapters. The chapter concludes with a discussion of results from

psychology that motivate certain design decisions.

Chapter 4 demonstrates how sensorimotor embedding can be used to learn

the structure of a foveated retina. Inspired by experiments in psychology, the robust

nature of sensorimotor embedding is evaluated using both a lesion experiment and

a vision inversion experiment.

Chapter 5 demonstrates how sensorimotor embedding can be used to learn

robot position in both Gridworld and Roving Eye domains. Agent position is inferred

using sensorimotor embedding in both these domains.

Chapter 6 demonstrates how sensorimotor embedding can be used to learn

object pose. Experiments in this chapter are inspired by psychological studies that

demonstrate view preference biases in human subjects. Experiments show how an

agent can combine view biases with sensorimotor embedding to learn features corre-

sponding to object pose.

Chapter 7 demonstrates how sensorimotor embedding can be used to learn

depth features. These features are learned from stereo images and in simulation

using a robot that supports vergence. A brief overview of vergence strategies is

10

included, along with a discussion of human vergence models.

Chapter 8 demonstrates how sensorimotor embedding features can be used

to learn a policy in the Visual Mountain Car domain. This experiment uses learned

geometry to solve a control problem, and demonstrates that agents can build new

skills on knowledge learned using sensorimotor embedding.

Chapter 9 includes a general discussion of all the experimental results and po-

tential avenues for future work, including a discussion of other potential applications

of sensorimotor embedding. Future work includes extending sensorimotor embed-

ding using probabilistic policies, combining sensorimotor embedding with human

vergence models, and integrating this algorithm into more general developmental

programs.

Chapter 10 concludes the dissertation with a summary of contributions and

final conclusions.

11

Chapter 2

Background and Related Work

Geometry is not true, it is advantageous. –Henri Poincaré

This chapter serves as a self-contained overview of developmental robotics,

reinforcement learning, and manifold learning. The work presented in subsequent

chapters will draw on techniques and ideas in each of these areas. Each section also

includes a review of selected related work.

2.1 Developmental Robotics

2.1.1 Introduction

Autonomous mental development has been proposed as the solution to many of the

problems of traditional robotics [81]. This approach seeks to solve the problem of

programming robots for non-specific tasks in open environments. The goal of au-

tonomous mental development is to create a developmental program that undertakes

mental development similar to what is observed in biological systems. A develop-

mental program builds up knowledge over time from raw experience. Robots that

develop knowledge autonomously could potentially adapt to changes in the same

12

way humans do. Robots programmed to develop autonomously can also serve as a

platform for testing theories of biological development.

2.1.2 Bootstrap Learning

For a more formal view of development, consider an agent solving the bootstrap learn-

ing problem. This agent starts with an uninterpreted sensor and motor interface and

needs to learn appropriate abstractions that allow the agent to function. Consider

an uninterpreted sensor interface as a time sequence of vectors zt = (z0, z1, . . . , zn)t

where each zi ∈ R. A motor interface is a similarly general sequence of vectors

ut = (u0, u1, . . . , uk)t where each motor variable can be set by the agent.

The world in which the agent is embedded dictates how the agent’s motor

commands affect subsequent sensory signals. Note that the world as it is and the

agent’s perception of the world are separate entities. Let s ∈ S denote the state

of the world. The function g : S → Z where Z is the space of sensory signals

determines how world state results in sensor signals. The function h : Z → U is

the agent’s control function or method of choosing motor actions from the space of

possible motor commands U given the agent’s knowledge and current stimulus. The

world function f : S×U → S determines how an agent’s actions alter the subsequent

state of the world.

The complete agent-world system has the following formal structure:

zt = g(st) (2.1)

ut = h(zt) (2.2)

st+1 = f(st, ut). (2.3)

where only h and the variables zt and ut are known to the agent. The goal of

a bootstrapping agent is to learn a reasonable model of the external world from

immediate perceptions over a long period of development. To help manage the

13

complexity of this learning task, agents must focus first and foremost on what can

be learned from direct sensorimotor experience. Developmental programs search for

good abstractions and good control functions in an incremental, lifelong process for

a single agent.

Autonomous mental development is potentially agnostic concerning the de-

tails of the robot platform. A robot learns basic skills and knowledge over time

directly from first-hand experience. In natural systems, autonomous mental de-

velopment is paired with physical development. In artificial systems, the physical

platform is static. For instance, in the case of a robot, techniques that utilize knowl-

edge already in the environment may depend on the robot having certain physical

properties, even if the robot does not know it has these properties.

Evolution acting on the physical developmental process may result in certain

developmental tricks that simplify mental development. As an example, consider the

passive bipedal walker developed by Ikemata et al. [28]. The walker has no control

code, no motors, and no sensors. It uses potential energy to walk; the algorithm

controlling the movement is entirely encoded in the physical construction of the

robot itself. The desired skill, walking, requires no mental development to acquire.

The physical properties of the agent already provide the necessary skill.

As another example, consider that compliant materials on contact surfaces of

robot grippers often provide additional robustness and adaptability in cases where

the target surface may be uneven and the disposition of the object not precisely

known [59]. The human hand is one example of a very capable compliant manipulator

that has soft textured grip surfaces. For infants, the biological structure of the hand

complements a primitive Palmar Grasp Reflex [58]. Pressure applied to the palm

of an infant elicits a grasping motion, which is suppressed during later stages of

development. This interplay between the physical structure and reflex actions makes

the search space manageable for discovering useful early skills.

14

The process of development may take advantage of particular physical prop-

erties of an agent, or general physical properties of sensors, effectors, and the re-

lationship between sensors and effectors. When considering the bootstrap learning

problem, the platform and environment provide a great deal of structure for the

learning process. Much in the same way that human development is contingent on

human physiology and physiological development, a developmental program may be

reasonably restricted to a constrained class of target platforms.

2.1.3 Related Work

A developmental approach to robotics requires understanding research in a wide va-

riety of disciplines. Most developmental systems are biological, so researchers take

inspiration from studies of child development, studies of great apes, and other bi-

ological systems that demonstrate developmental changes. As a robotics challenge,

the algorithms and implementation depend on many areas of research in computer

science. Reinforcement learning and manifold learning discussed below have appli-

cations in developmental robot systems.

One important problem in developmental robotics is grounding external world

knowledge. Since developmental robots learn from experience, the robot is respon-

sible for acquiring knowledge of the world instead of relying on knowledge encoded

in advance through careful engineering. For example, Choe et al. [13] use rein-

forcement learning to enforce invariant properties in sensors, then associate these

internally maintained invariants with external world properties. The approach is

limited to grounding sensory perception using induced sensory invariants, though

like sensorimotor embedding, the grounding involves properties of agent actions.

Another approach to grounding knowledge is to use nuisance functions as

a primary method of articulating the bootstrapping problem [12]. A nuisance is

an invertible, unknown adversarial function that exists between a robot’s sensors

15

and effectors and the external world. An optimal bootstrapping agent needs to be

able to adapt to environments that have nuisance functions. In order to make the

analysis tractable, nuisance functions are restricted to automorphisms over sets of

agent senses and actions. The goal of bootstrapping can then be characterized as

designing bootstrapping programs that are invariant to groups of nuisance actions

and that make sense for sets of dynamical systems. Sensorimotor embedding is

invariant to some nuisance functions. For example, the inverted vision experiment

from Chapter 1 is a form of nuisance function. This nuisance function is applied to

an agent using sensorimotor embedding in Chapter 4. The agent was able to adapt

to this change.

Stronger et al [72] developed an approach to learning sensor and actuator

models called Autonomous Sensor and Actuator Model Induction (ASAMI). This

approach bootstraps sensor and actuator models by learning both simultaneously,

and using the partially learned model of one type to aid in the estimation of the

model of the other type. This technique was applied on a Sony Aibo ERS-7 robot,

which was able to learn self-consistent internal action and sensor models.

Hart et al. [24] recently demonstrated a developmental learning process that

involved a sequences of bootstrapping calibrations on a humanoid robot. The end

result of this calibration process was an internal model of the robot’s joint and sensor

geometry with sufficient capabilities to make mirror recognition possible. At a high

level, this approach involves calibrating a kinematics model using data collected from

marker tracking on joints during a period of guided self-motion of the robot. With a

learned kinematics model, the authors showed that cameras can then be calibrated

using the kinematics model. This approach is inspired by the idea that infants use

their own hands as tracking targets for early sensorimotor calibration.

One important element of this bootstrapping approach is that the first cal-

ibration stage, learning a kinematic model, depends on having a calibrated camera

16

and marker tracking system. While bootstrapping camera calibration from a kine-

matic model is an important contribution, if learning the kinematic model requires

a calibrated camera, the bootstrapping process still requires ground truth informa-

tion. Tracking targets are another perceptual goal that may be useful for agents

using sensorimotor embedding.

2.1.4 Conclusion

This section provided an overview of bootstrap learning, and provided some ex-

amples of related work. As demonstrated in the following chapters, sensorimotor

embedding solves part of the bootstrap learning problem by learning geometric fea-

tures. Sensorimotor embedding depends on the agent being able to learn policies

that achieve simple perceptual goals. Even if the physical properties of the platform

change, sensorimotor embedding can run unaltered to learn geometric features. This

ability to adapt to change is a key advantage of the bootstrap learning approach to

robot systems.

2.2 Reinforcement Learning

2.2.1 Introduction

Reinforcement learning is a formalization of how agents learn to act in complex

environments. A reinforcement learning agent’s goal is to find an optimal policy

that maximizes expected agent reward (or alternatively, minimizes the cost of acting

for the agent). If the environment is completely observable, these types of problems

can be described as Markov Decision Processes (MDP).

17

Environment

Agent

S
e
n
s
o
r

states

observations
actions

rewards

Figure 2.1: Agent-Environment System. An abstract agent-environment system

as described by a Markov Decision Process consists of an agent that interacts with

an environment that is fully observable. Actions result in changes in environmental

state which are then observed by the agent.

2.2.2 Markov Decision Process

A Markov Decision Process (MDP) is a tuple (S,A,R,P, γ) consisting of a set of

states S, a set of actions A, a reward functionR : S×A → R, a transition probability

function P : S ×A× S → [0, 1], and a discount factor γ.

A policy is a function that, given a state, chooses an action for that state,

e.g. π : S → A. The choice of action can be deterministic or probabilistic, in which

case policies give a distribution over possible actions conditioned on the current

state, π : S × S → [0, 1]. In this case π(a; s) denotes the probability of choosing

action a when in state s when following policy π. A policy is considered optimal if it

maximizes the expected discounted future reward. Formally, the expected discounted

reward for a policy π at any state st is

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑
k

γkrt+k+1|st = s} (2.4)

where each subsequent state is drawn from a distribution that depends on the chosen

action according to the policy and the transition probabilities and rt+k+1 is the

reward given at state t + k + 1. An important related quantity is the action-value

18

function, which gives the expected discounted future reward for state-action pairs

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ{
∞∑
k

γkrt+k+1|st = s, at = a}. (2.5)

An optimal policy solves a Markov Decision Problem by maximizing dis-

counted, expected reward. The goal of reinforcement learning is to develop efficient

algorithms for finding optimal policies.

2.2.3 Least Squares Policy Iteration

There are several different approaches to solving Markov Decision Problems. Some

agents in later chapters will use Least Squares Policy Iteration (LSPI) to find an

optimal policy [35]. LSPI is an actor-critic method for estimating the optimal policy

over a linear feature space. It is an off-policy, model-free, sample-efficient method.

LSPI depends on repeated application of Least Squares Temporal Difference Q-

Learning (LSTDQ).

The state-action values for Qπ are the solution to a linear system of Bellman

equations

Qπ(s, a) = R(s, a) + γΣs′∈SP(s, a, s′)Σa′∈Aπ(a′; s′)Qπ(s′, a′). (2.6)

The system of Bellman equations can be concisely stated in matrix form

Qπ = R+ γPΠπQ
π, (2.7)

where Qπ is a vector of size |S||A| and its elements are expected values of discounted

future rewards under policy π for each state-action pair. Ππ(s, (s, a)) = π(a; s) is a

matrix of size |S| × |S||A| where π(a; s) is the probability of taking action a in state

s, and P ((s, a), s′) = P(s, a, s′) represents the dynamics of the system in matrix

form. P is of size |S||A| × |S|.

Instead of representing an action-value function Qπ directly in terms of the

existing state and action spaces, a mechanism of feature extraction is often intro-

duced, where policies are represented as linear combinations of state-action features.

19

Consider a family of functions φi : S × A → R that maps states and actions to real

values, and denote φ(s, a) as a vector of the form,

φ(s, a) =


φ0(s, a)

φ1(s, a)
...

φk(s, a)

 . (2.8)

Let Φ be a matrix of the form

Φ =


φ(s0, a0)T

φ(s1, a0)T

...

φ(s|S|, a|A|)
T

 (2.9)

with size |S||A| × k. The action-value function Qπ can be represented as the linear

combination of these basis functions:

Qπ = Φ · w, (2.10)

where w is a vector of weights of size k. Casting all the components of the Bellman

equation in matrix form exposes the linear relationship between the action-value

basis, the weight vector w, the rewards R, the policy and model components Ππ and

P . In matrix terms,

Φw = R+ γPΠπΦw. (2.11)

Solving this linear system amounts to finding the fixed point solution for w given π.

Collecting terms,

(Φ− γPΠπΦ)w = R, (2.12)

which is a linear system whose least squares solution is given by taking the Moore-

Penrose pseudo-inverse of the matrix Φ−γPΠπΦ [4]. This is the key to Least Squares

Policy Iteration. For a given π, the algorithm approximates both the reward R and

20

the matrix Φ− γPΠπΦ. The resulting linear system is then solved for w to produce

an accurate action-value function in terms of the basis Φ.

With a proper choice of basis φ for representing the action value function, the

density of matrix Φ−γPΠπΦ can be tightly controlled. However, the matrix inverse

is almost always dense. For large state spaces, inverting the matrix in Equation 2.12

would be impractical. Fortunately, it is almost never necessary to invert a matrix

and the weights can be determined via a linear solver. Solvers perform quite well

for sparse systems; therefore as long as the basis φ provides a sparse basis, the run

time of LSTDQ is manageable.

Policy iteration involves an alternating process of evaluating the current pol-

icy and improving the policy. The current policy for each iteration of LSTDQ is

parameterized by the current weight vector w. The next action with parameters

w is given by π(s) = argmax(w · φ(s, a)). This is the action with the highest esti-

mated value. With each new estimate of w (e.g. estimate of the approximate value

function), the policy improves by choosing the maximum value relative to the new

action-value estimates. So to perform policy iteration, LSTDQ only needs to be

applied repeatedly until the action-value estimate converges.

It is worth noting that the choice of basis φ is important for the successful

application of LSPI. The basis should provide a sparse representation of the value

function while also being expressive enough to model the underlying MDP effec-

tively. A key challenge in applying LSPI in developmental settings is that the input

observations for MDPs are in the form of very high-dimensional sensors.

The curse of dimensionality refers to problems that arise as the dimension

of a space increases. For example, 100 evenly spaced samples of a unit interval will

have a resolution of 0.01. To achieve the sample spatial resolution from a sample

set of a ten dimensional unit cube [0, 1]10 would require 1020 samples [3]. Covering

high-dimensional space requires the careful selection of a basis φ.

21

One effective approach is to map high-dimensional observations into a low-

dimensional space using principal component analysis, and then using a radial ba-

sis function network to “featurize” the resulting principal component space, using

a random subset of samples points as basis-function centers. Any method of di-

mensionality reduction may work. For example, sparse coding methods that mimic

human visual processing [36] provide a similar framework for building basis function

for representing value functions.

In Chapter 6, the policy that generates action traces for sensorimotor embed-

ding uses principal component analysis and basis function networks to learn a policy

based on simulated object images.

2.2.4 Tile Coding

Reinforcement learning in continuous domains usually requires that the learning

agent implement some form of function approximation. For example, in the moun-

tain car domain described later, the agent typically receives position and velocity

information, which vary continuously. A value function f(position, velocity)→ value

should provide a continuous value estimate. Some form of approximation is required

to model a continuous value function.

A Cerebellar Model Articulation Controller (CMAC) is one such approxima-

tion algorithm. This algorithm is sometimes referred to as tile coding. It is loosely

based on the mammalian cerebellum. For inputs to a CMAC, CMAC(x1, . . . , xn)

maps the vector x1, . . . , xn to k partially overlapping tiles [41]. Associated with each

of these tiles is a weight, and the output of the CMAC function is the sum of all

activated weights. In practice, tiles are built using a hash function specially designed

to model overlapping tiles.

The tile weights can be trained using stochastic approximation, most com-

monly with the Robbins-Monro algorithm [4]. CMAC function approximation is

22

often used conjunction with SARSA(λ), an on-policy, online algorithm for solv-

ing reinforcement learning problems. In Chapter 8, the agent learns a continuous

approximation of the value function using tile coding.

2.2.5 Related Work

In an area known as representation learning, manifold learning methods have been

employed to form representations that accelerate reinforcement learning [38, 62, 19].

For example, manifolds have been used to decompose large continuous state spaces

into topologically similar regions [62]. Value functions can be approximated in the

image of charts, instead of over the original manifold, a change to the state space

has been shown to be beneficial for learning policies.

Proto-value functions are another method of representing the state space for

reinforcement learning [38]. Proto-value functions are built using Laplacian eigen-

maps over the state transition graph to generate a low-dimensional basis for repre-

senting value functions during reinforcement learning. These proto-value functions

make it easy for reinforcement learning to scale to very large state spaces.

Neighborhood component analysis (NCA) is another technique used to gen-

erate a low-dimensional sparse basis for reinforcement learning [19]. Maintaining

a sparse representation of the state space is another approach to scaling reinforce-

ment learning. This technique has shown promise in solving reinforcement learning

problems on a mobile robot using vision [64].

Self-Organizing Distinctive State Abstractions (SODA) outlines an alterna-

tive to scaling reinforcement learning to high-dimensional, complex domains. One

critical component of the SODA approach to early developmental problems or “high-

diameter” task domains is the use of growing neural gas to separate the sensory

experience of the agent into distinctive states. Like the earlier self-organizing map

algorithm of Kohonen, Growing Neural Gas (GNG) quantizes the input space into a

23

set of adaptive feature vectors [33, 18]. As new input is received, the GNG algorithm

adapts existing feature vectors to decrease the matching error between inputs and

existing feature vectors, adding new feature vectors as necessary. The result of GNG

is a code book of feature vectors whose topological structure models the distribution

of the observed data.

Predictive state representations (PSRs) are another method of represent-

ing state in reinforcement learning problems [60]. Predictive state representations

ground state in statistics over observables, and represent state in terms of predictions

of future observations. This method of representing states has been used to build

models of cameras and manipulators, where PSRs allow a robotic agent to predict

future depth observations based on sequences of motor commands [7].

2.2.6 Conclusion

Reinforcement learning is an important component of sensorimotor embedding.

Learning policies that achieve perceptual goal states is the first step in sensorimotor

embedding, and the result of sensorimotor embedding is a geometric representation

of the state space. Like the related work presented here, sensorimotor embedding

employs manifold learning methods to arrive at a representation of geometry.

2.3 Manifold Learning

2.3.1 Introduction

Manifold learning, also referred to as dimensionality reduction, is a form of unsu-

pervised learning that seeks to generate low-dimensional data from high-dimensional

data while preserving important properties of the data. Manifold learning has many

applications, such as protein clustering, sensor localization, and face recognition

[37, 5, 76]. For example, in ad hoc sensor networks, the topology and geometry of

24

the network needs to be inferred from a large number of single-sensor observations.

The goal is to construct a map of ad hoc sensors without any knowledge except

the signals from the individual sensors. The aggregate sensor readings form a high-

dimensional dataset, and the true coordinates of the sensors are the low-dimensional

coordinates that are discoverable through manifold learning.

This section begins with a formal definition of a manifold, then continues with

a detailed analysis of multidimensional scaling, which is an important component of

sensorimotor embedding. The section concludes with an overview of two non-linear

algorithms for manifold learning, and a review of related work.

2.3.2 Formal Manifold Definition

A manifold is a topological space that resembles Euclidean space near each point in

the manifold. This idea is usually formalized using charts.

A chart for a topological spaceM is a homeomorphism ϕ from an open subset

U of M to an open subset of Euclidean space. A chart is traditionally recorded as

the ordered pair (U,ϕ). Charts are functions that map portions of manifolds to

Euclidean space. These functions are sometimes called coordinate maps, since they

associate coordinates with points on the manifold.

An atlas for a topological space M is a collection {(Uα, ϕα)} of charts on M

such that
⋃
Uα = M . If the co-domain of each chart is the n-dimensional Euclidean

space and the atlas is connected, then M is said to be an n-dimensional manifold.

For manifold learning problems, an n-dimensional manifold is usually embed-

ded in a higher dimensional Euclidean space. The learning problem is to identify

property-preserving charts that allow the manifold to be characterized (at least lo-

cally) as corresponding to a lower dimensional Euclidean space. Linear approaches,

including multidimensional scaling, are described next.

25

2.3.3 Linear Methods

Principal component analysis (PCA) is a linear method of dimensionality reduc-

tion that projects high-dimensional data onto a basis in the order of the greatest

amount of remaining data variability. PCA is often used in a wide variety of sta-

tistical, machine learning, and visualization contexts. Linear multidimensional scal-

ing (MDS), which is similar to PCA, generates a low-dimensional dataset such that

pairs of points have approximately the same metric relationships as the original high-

dimensional points. The following derivation of multidimensional scaling is adapted

from Krzanowski [34], and demonstrates that MDS is an optimal linear method.

For n points xi in real p-dimensional space, let X = [x1 x2 . . . xn]. Consider

the matrix K = XTX whose entries are dot products kij = xi · xj . K is known as

a Gram matrix. Given K, X can be reconstructed through matrix decomposition.

One approach is to use the singular value decomposition

M = UΣV T , (2.13)

where U and V are unitary matrices and Σ is a non-negative real-valued diagonal

matrix. The rows of U are called the left singular vectors of M . Similarly, the rows

of V are known as the right singular vectors of M . The entries of Σ are the singular

values of M .

The singular value decomposition is related to the eigen decomposition of a

matrix. The left singular vectors are the eigenvectors ofMMT and the right singular

vectors are the eigenvectors of MTM . The singular values are the square roots of

the eigenvalues of MMT and MTM . Consider the singular value decomposition of

X = UΣV T . Then

K = XTX = (V ΣUT)(UΣV T) = V Σ2V T . (2.14)

For positive semi-definite matrices the eigen decomposition is the same as the sin-

gular value decomposition. So by finding the eigenvalue decomposition of K, it is

26

possible to reconstruct X up to multiplication by a unitary matrix as,

K = V ΣV T = (V Σ)(ΣV T) = XTX. (2.15)

The key to multi dimensional scaling is to relate the matrix of squared inter-

point distances ∆ to the matrix K. Each entry dij in ∆ is δ(xi, xj) for some distance

metric δ. To do so requires the additional constraint that the points xi have zero

mean,
∑

i xi = 0. This constraint can be expressed as K1 = 0 and 1K = 0.

Entries of the distance matrix ∆ have the form,

δij = ||xi − xj ||2 = xTi xi − 2xTi xj + xTj xj = kii − 2kij + kjj (2.16)

where kij is the ij-entry in K and || · || is the metric space norm. Summing over the

rows of ∆, ∑
i

δij =
∑
i

kii − 2
∑
i

kij +
∑
i

kjj = trace(K) + nkjj (2.17)

after applying the centering constraint
∑

i kij = 0. Similarly for column sums,∑
j

δij = nkii + trace(K). (2.18)

Finally the sum over all of the squared distances can be computed as,∑
i

∑
j

δij = n · trace(K) + n · trace(K) (2.19)

since
∑

i

∑
j kij = 0 by the centering constraint. For convenience δ·j denotes the

sum over the rows of ∆. Similarly, δi· and δ·· denote the sums over the columns and

all entries of ∆, respectively. From Equation 2.19,

trace(K) =
δ··
2n
. (2.20)

Solving for kii and kjj in Equations 2.18 and 2.17 using Equation 2.20 to simplify,

kii =
δ·j
n
− δ··

2n2
kjj =

δi·
n
− δ··

2n2
. (2.21)

27

Plugging these into Equation 2.16,

δij =
δ·j
n
− δ··

2n2
+
δi·
n
− δ··

2n2
− 2kij . (2.22)

Solving for kij gives

kij = −1

2
(δij −

δ·j
n
− δi·
n

+
δ··
n2

). (2.23)

Equation 2.23 is a recipe for constructing K in terms of the elements of ∆.

Singular value decomposition reconstructs the original points xi having the desired

dimension. The use of singular value decomposition here allows for the selection of

points with a fixed dimension that provides the best approximation of the original

distances. This result is a consequence from the following key theorem [65].

Theorem (Eckart – Young) Consider the singular value decomposition A =

UΣV T . Let Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · · + σkukv

T
k be the k-truncated SVD,

with Ak a matrix of rank k. Among all matrices of rank k, Ak serves as the

best approximation to A under the 2-norm, i.e. ||A− Ak||2 ≤ ||A−Mk||2 for

any rank k matrix Mk.

In the case of multidimensional scaling, the amount of truncation determines

the dimension of the reconstructed points, and according to the theorem, the related

matrix of inter-point distances ∆̃ will be the best approximation of the original

matrix ∆ under the 2-norm.

Multidimensional scaling is best suited to identifying low-dimensional lin-

ear representations of data given the inter-point distances of the high-dimensional

data. For non-linear manifolds, however, the best linear embedding may still re-

quire many dimensions. Several non-linear methods of dimensionality reduction

have been developed that generate representations of data using fewer dimensions

for non-linear manifolds. Two algorithms, Isomap and Maximum Variance Unfolding

(MVU)[79, 75], will be discussed next.

28

2.3.4 Isomap

The key insight that allows Isomap to find low-dimensional embeddings of non-linear

manifolds is that distances between points are computed using a standard distance

metric if points are close, and using shortest paths along the resulting graph structure

if points are distant [75]. Computing distances between points “along the manifold”

instead of using the distances inherited from the ambient space in which the manifold

is embedded results in a lower dimensional representation of the data (Figure 2.3).

Using specially constructed distances, rather than distances through the ambient

space, is a key idea that motivates many approaches to manifold learning, including

sensorimotor embedding.

Figure 2.2: Swiss Roll Example. The data lies on a two dimensional nonlinear

surface in three dimensional space. Non-linear manifold learning methods are needed

to identify the two dimensional surface.

A great deal of the flexibility of Isomap stems from the fact that metrics for

comparing data locally are often easier to specify than metrics that are valid over

29

Figure 2.3: Isomap Example. This image shows the result of applying Isomap to

the Swiss roll dataset, along with the neighborhood graph used to compute shortest

paths. Isomap is able to expose the two-dimensional structure of the original data.

the whole data set. Local measurements are all that are required for generating low-

dimensional representations of manifold data. As a practical matter, when deciding

how to apply Isomap to any particular dataset, it is the responsibility of the designer

to choose a method of computing the distance between any two points in the data

set. If {xi} is the high-dimensional dataset, the desired distance function is given by

d(xi, xj). Local neighborhoods are then chosen either by specifying a limit ε such

that any two points xi and xj are in the same neighborhood if d(xi, xj) < ε, or by

taking the k-nearest neighbors around every data point.

The missing entries in the resulting partial distance matrix ∆ are then com-

puted using shortest paths along the neighborhood graph. The produces a complete

matrix of isometric inter-point distances ∆iso which is then processed using MDS as

described above. An embodied form of Isomap, that uses actions to identify local

30

distances will be dicussed in related work and compared to sensorimotor embedding

in Chapter 5.

2.3.5 Maximum Variance Unfolding

Maximum Variance Unfolding (MVU) takes a different approach to handling non-

linear data [80]. The intuition is that maximizing the variance of the data subject to

local constraints implicitly reduces the intrinsic dimension of the data. For example,

a crumpled piece of paper is highly non-linear, but spreading the piece of paper

out flat increases the variance of the data while preserving local distances along the

paper’s surface.

The first step in maximum variance unfolding is to form a semi-definite pro-

gram that maximizes the variance of the data subject to the local distance con-

straints. Note that trace(K) =
∑

i kii =
∑

i x
T
i xi = ||xi||2. So maximizing trace(K)

will produce an embedding that “pushes” all the points away from the origin. Max-

imizing the trace requires solving a semi-definite programming problem where the

local measurements δij are preserved [77]. As with Isomap, these local measure-

ments can be chosen using an ε parameter or k-nearest neighbors. The semidefinite

program for MVU is:

Maximize trace(K) subject to

• K � 0

•
∑

ij kij = 0

• kii − 2kij + kjj = δij .

This semi-definite program can be optimized using any of the publicly avail-

able solvers [8, 73]. Eigenvectors for the resulting Gram matrix K provide the low-

dimensional embedding of the original data points. Actual low-dimensional points

are then generated through matrix decomposition as in multidimensional scaling.

31

MVU forms the basis of Action Respecting Embedding (ARE), an approach to

learning geometry that incorporates action-based constrains into MVU. ARE will

be discussed in related work.

2.3.6 Distance Functions

All manifold learning methods discussed above depend on identifying and preserving

certain properties that relate data points, with the distance between data points as

one such key property.

For formal manifolds, where the manifold is the domain of a set of chart

functions, the distance between nearby points on the surface of the manifold can

be determined using distance between the points in the image of the chart func-

tions. Many innovations in manifold learning depend on modifying this mechanism.

For example, Isomap is multidimensional scaling with a carefully chosen method of

determining distance that uses the local graph structure of the data.

32

def edit_distance(s, t):

n = len(s) + 1

m = len(t) + 1

d = init_costs(n, m) # initialize cost matrix

for i in range(m):

for j in range(n):

if t[i-1] == s[j-1]:

d[i][j] = d[i-1][j-1]

else:

d[i][j] = min(d[i-1][j] + 1, d[i][j-1] + 1, d[i-1][j-1] + 1)

return d[m-1][n-1] # return minimum cost

Algorithm 1: Edit Distance. The edit distance algorithm is a dynamic program-

ming algorithm that determines the minimum number of edits required to transform

one string into another.

For sensorimotor embedding, where sequences of actions are compared to de-

termine the distance between anchor states, the method of comparison is important.

For discrete action spaces, edit distance is a dynamic programming algorithm that

can determine the distance between sequences of discrete actions. An implementa-

tion of edit distance is found in Algorithm 1. A useful feature of edit distance is

that distances between individual actions do not need to be defined, only the cost

of edits. This allows agents to compare sequences of discrete actions, even if the se-

quence length differs and the semantics of individual actions do not lend themselves

to obvious methods of comparison.

33

2.3.7 Related Work

Manifold learning has long been considered a useful tool for understanding, process-

ing, and simplifying complex state spaces prior to applying other learning methods.

Manifold learning can also be used directly to acquire knowledge about the envi-

ronment. For example, Action Respecting Embedding (ARE) is a manifold learning

approach that maps raw sensory experience to a low-dimensional manifold in a way

that obeys the constraints imposed by agent actions [9]. This method uses a variation

of Maximum Variance Unfolding (MVU) that adds additional convex constraints to

the semi-definite program that lies at the heart of MVU.

In action respecting embedding, data points that are connected by an action

must be neighbors. Moreover, the distance (in sensory space) between any two points

connected by an action defines a non-uniform neighborhood. The parameter for

adjusting neighborhood size in action respecting embedding is the number of actions

T that connect any two data points. In typical applications of MVU, neighborhood

size is either set to some constant distance ε or k nearest-neighbors.

Formally, given an action window of size T the neighborhood adjacency ma-

trix η is constructed such that

ηij = 1 ⇐⇒ ∃k, l such that

|k − i| < T, |l − j| < T,

||xi − xk|| > ||xi − xj || and

||xj − xl|| > ||xi − xj ||.

In other words, xi and xj are neighbors if ||xi − xj || is contained within the

largest distance between xi and xj and any of the data points within T actions of

either.

In addition to non-uniform neighborhood sizes inferred from action rela-

34

tionships between data points, action respecting embedding encodes the intuitive

idea that if at points i and j an agent takes the same action a, then that action

will not affect the resulting distance between subsequent points. In other words,

||xi − xj || ≈ ||xi+1 − xj+1||. Encoding this intuition as a constraint for a semi-

definite program requires that

∀i, j where ai = aj then k(i+1)(i+1) − 2k(i+1)(j+1) + k(j+1)(j+1) = kii − 2kij + kjj .

The ARE algorithm then proceeds by using convex optimization to solve a semi-

definite program of the following form:

Maximize trace(K) subject to

• K � 0

•
∑

ij kij = 0

• kii − 2kij + kjj ≤ ||xi − xj || ∀i, j such that nij > 0

• ∀i, j where ai = aj then k(i+1)(i+1)−2k(i+1)(j+1) +k(j+1)(j+1) = kii−2kij +kjj .

The resulting matrix K can be decomposed into eigenvectors that form the

basis of the low-dimensional representation of data points as in MDS. Figure 2.4

shows the results of action-respecting embedding applied to a simple roving eye do-

main. This domain is an important target for both action respecting embedding and

sensorimotor embedding. The domain simulates a viewing window traversing a much

larger image. The agent actions move the viewing window across the image, and the

agent can perceive only the part of the underlying image that is currently inside the

viewing window. This approach to embodied dimensionality reduction assumes a

discrete (and small) set of available actions. In the sensorimotor embedding action

spaces are not required to be discrete.

Another application area of manifold learning in developmental robotics is in

learning the organization of sensors. For example, manifold learning has been used

35

Figure 2.4: Action Respecting Embedding. Action respecting embedding can

reconstruct paths in a “roving eye” visual navigation domain [10]. The sensorimotor

embedding approach to this problem is presented in Chapter 5.

to organize sense elements and learn an abstract low-dimensional motor interface

[54]. After sensor and motor geometry were learned, the agent tracked statistical

features to construct reasonable primitive sensorimotor behaviors. This work was

later expanded to mobile robots with vision [45]. Sensor organization was later

explored using non-linear manifold learning methods [42]. Procrustes analysis (see

Chapter 3) applied to non-linear dimensionality reduction methods in a variety of

embodied and sensor reconstruction domains was used for comparing the quality of

different approaches [69, 16]. That work included one of the only explorations of the

effect of control policies on manifold learning in embodied domains.

Manifold learning has also been applied to both sensor and action spaces in

a way that attempts to take advantage of the interaction between action and sensor

spaces [50, 51]. A modified form of Isomap was developed that computes distances

between sensory signals using either

36

• d(si, sj) = ||a|| where a is an action that takes the agent from si to sj or

• the shortest path along the resulting neighborhood graph.

Embodied Isomap does not always successfully represent sensorimotor data using as

few dimensions as the sensorimotor embedding approach (Chapter 5).

2.3.8 Conclusion

Sensorimotor embedding is also a manifold learning algorithm, whose input is the

high-dimensional sensory experience of a developing robot and whose output is a

low dimensional representation of state geometry. Action respecting embedding and

embodied Isomap are two competing approaches to sensorimotor embedding. Like

sensorimotor embedding, these methods use information about agent actions to aug-

ment existing methods of manifold learning. Sensorimotor embedding has better

run time properties than action respecting embedding, and generates more faithful

representations of geometry than either action respecting embedding or embodied

Isomap in some domains (Chapter 5).

2.4 Conclusion

The research areas and related work in this chapter span developmental robotics,

manifold learning, and reinforcement learning. Like sensorimotor embedding, all of

the results mentioned tackle some aspect "blooming buzzing confusion" of the senses

through learning and development. The next chapter will describe sensorimotor

embedding in detail. Subsequent chapters will evaluate sensorimotor embedding in

several different domains.

37

Chapter 3

Sensorimotor Embedding

". . . the apodeictic certainty of all geometrical propositions, and the pos-

sibility of their a priori construction, is grounded in this a priori necessity

of space." –I. Kant Critique of Pure Reason

Sensorimotor embedding is an algorithm for learning geometry. Agents that

sense and act can use sensorimotor embedding to learn about the geometry of the

environment. Sensorimotor embedding is a developmental algorithm that facilitates

open-ended development for diverse agent architectures. In this chapter, senso-

rimotor embedding will be described in detail along with methods for evaluating

sensorimotor embedding.

3.1 Formal Definition

Sensorimotor embedding is a manifold learning algorithm. For an overview of mani-

fold learning, see Section 2.3 in Chapter 2. To review, a manifold learning algorithm

transforms high-dimensional data into low-dimensional data. Sensorimotor embed-

ding transforms high-dimensional sensory or state data into low-dimensional data.

Sensorimotor embedding allows an agent to learn geometry. To learn geom-

38

etry, an agent must learn a set of coordinates M and a metric defined over that

set δ : M ×M → R. The pair (M, δ) is a metric space if δ satisfies the following

properties:

• δ(x, y) ≥ 0 (non-negative);

• δ(x, y) = 0 if and only if x = y (identity of indiscernibles);

• δ(x, y) = δ(y, x) (symmetry);

• δ(x, z) ≤ δ(x, y) + δ(y, z) (triangle inequality).

The geometry the agent learns must be grounded. A geometry is grounded if

there exists an external world property that can be described as a metric space (Y, δ′)

such that, for external world states yi and yj , the agent knows of corresponding

learned states xi and xj such that δ(xi, xj) = δ′(yi, yj). This grounding must be

reasonable, in that the external world property described by (Y, δ′) is related in

some way to the metric space learned by the agent. If so, then the agent has learned

a grounded geometry. In practice, the nature of this relationship is known to the

experimenter beforehand. In nature, these grounded external world properties are

how an agent can construct knowledge of the world.

To learn geometry, sensorimotor embedding proceeds in four steps:

1. The agent first learns an optimal policy.

2. For each start state, the agent applies the learned policy and records the actions

as a single action trace.

3. The agent computes the distances between each of the recorded action traces

forming a distance matrix.

4. The agent performs multidimensional scaling on the distance matrix, gener-

ating a set of real-valued, low-dimensional points corresponding to each start

state.

39

3.1.1 Learning a Policy

Learning a policy is the first step of sensorimotor embedding. As described in Chap-

ter 2 Section 2.2, policies are functions from a set of states to a set of actions,

π : S → A.

Policies are functions that describe an agent’s moment-by-moment decision making

and are trained with respect to a reward function. For the learning tasks considered

in this thesis, natural perceptual goals are present as part of the task. The relevant

geometry is best understood using action traces that drive the agent to these goal

states.

The reinforcement learning problems that an agent seeks to solve at this stage

are not general reinforcement problems with arbitrary reward signals. In a typical

application, the agent receives reward only when a perceptual goal state is reached.

Chapter 9 will include some areas of future work that apply sensorimotor embedding

in more general settings for the purposes of visualization and option discovery.

3.1.2 Action Traces

Action traces are sequences of actions that are the result of an agent applying a

policy. In formal terms, for a policy π : S → A from states to actions, and a

deterministic transition function T : S × A → S, an action trace is the sequence of

actions produced by iteratively applying the policy and the transition function. For

example, one application results in π(s1) = a1 and T (s1, a1) = s2 and a subsequent

application π(s2) = a2 and T (s2, a2) = s3. Repeated application of the policy and

transition function results in sequence {st, at}∞t=1. The action component of this

sequence, {at}∞t=1, is the action trace. For notational convenience, the index term

will be omitted when not needed, so {at}nt=1 will be written as {a}n1 .

The agent associates the initial start state with the action trace that follows,

40

e.g. s1 ↔ {a}∞1 . Under this general definition, action traces do not necessarily

terminate. The experimental work in the following chapters uses finite action traces.

A finite action trace is the result of a terminating policy that ends when the agent

transitions to a terminal or goal state.

The transition function presented here is deterministic. Chapter 9 will include

a discussion of how to extend these results to non-deterministic transition functions

and non-deterministic policies. In brief, the move to non-determinism means that

policies with the same initial conditions can generate different action traces. Future

work will explore using the sample mode over generated action traces for action trace

comparisons.

3.1.3 Comparing Action Traces

To apply sensorimotor embedding, action traces must be comparable. Many common

actions can be parameterized using real valued vectors. For example, the motors on

a robot can be controlled by specifying sequences of motor torques. If higher level

controllers are available, then the action space can be parameterized using velocities

or positions. In each of these cases, the individual action parameters are real valued

vectors that are part of a Euclidean metric space. If the action space A is a metric

space with a metric d, then action traces {a}n1 and {b}m1 where n > m can be

compared by first appending the shorter of the two traces with zero actions so they

are of equal length. Then the distance between the traces can be calculated using

δtrace({a}n1 , {b}m1) =
m∑
t=1

d(at, bt) +
n∑

t=m+1

d(at, 0). (3.1)

With this definition, δtrace is a metric since it satisfies all the properties of

a metric. δtrace is non-negative since each component in the sum is non-negative.

δtrace({a}n1 , {a}n1) = 0 for two identical traces since d(at, at) = 0 for each component

of Equation 3.1. δtrace({a}n1 , {b}m1) > 0 when traces {a}n1 and {b}m1 differ since

41

at 6= bt for at least one value of t after zero-padding and therefore d(at, bt) > 0 for

at least one component in Equation 3.1. The function δtrace is also symmetric since

each component in the sum is symmetric.

δtrace satisfies the triangle equality since for three traces {a}m1 , {b}n1 , {c}l1,

where without loss of generality m ≤ n ≤ l, the sum δtrace({a}m1 , {b}n1) +

δtrace({b}n1 , {c}l1) can be written as

m∑
t=1

d(at, bt) +
n∑

t=m+1

d(0, bt) +
n∑
t=1

d(bt, ct) +
l∑

t=n+1

d(0, ct)

which after reordering terms can be written as

m∑
t=1

(d(at, bt) + d(bt, ct)) +

n∑
t=m+1

(d(0, bt) + d(bt, ct)) +

l∑
t=n+1

d(0, ct) (3.2)

By the properties of d, d(at, bt) + d(bt, ct) ≥ d(at, ct) and d(0, bt) + d(bt, ct) ≥

d(0, ct). Since every term in δtrace({a}m1 , {c}l1) is less than or equal to the cor-

responding term in (3.2), the sum of all the terms is less than or equal to

δtrace({a}m1 , {b}n1) + δtrace({b}n1 , {c}l1) and δtrace satisfies the triangle inequality.

Zero actions can also be prepended instead of appended to action traces. The

metric properties of this alternate distance function remain unchanged. Prepending

zero actions may bring similar actions into better alignment in certain domains. Dy-

namic time warping provides another potential approach for comparing sequences of

continuous actions, though with standard dynamic time warping, the metric prop-

erties of the trace comparison are lost [43].

If the space of actions is discrete, then sequences of actions can be compared

using edit distance. Edit distance is described in detail in Section 2.3.6. Action

traces where each action comes from a discrete action space can be represented as a

sequence of symbols. Edit distance will find the smallest number of edits required

to transform one sequence of symbols into another sequence of symbols. If turning

42

one sequence of actions into another one requires few edits, those sequences will

have a small edit distance. If turning one sequence into another requires many edits,

the two sequences will have higher edit distance. Like δtrace described above, edit

distance is a metric over symbol sequences [44].

3.1.4 Applying Multidimensional Scaling

For a finite set of action traces, an agent computes all distances between action

traces. Since each action trace is associated with a start state, s1 ↔ {a}n1 , the

agent can infer that distances between action traces are also distances between start

states. Distances between action traces can be computed using Equation 3.1, or

if A is discrete, using edit distance. Then a set of low-dimensional points can be

generated using multidimensional scaling that have approximately the same distance

relationships. In the final step of the algorithm, the agent associates the original start

states with these low-dimensional points, and infers that the distance between start

states is the distance between these low-dimensional points. These together provide

a set of euclidean coordinates, e.g. x, y ∈M , associated with the set of start states.

For a given policy π, the distance between start states is equivalent to the distance

between the resulting action traces. This equivalence has the form:

δπ(s, t) ≡ δtrace({a}m1 , {b}n1) ≈ ||x− y||

where start states s and s′ typically have very high dimension, {a} and {b} are

action traces that result from applying a policy π, and x and y are low-dimensional

coordinates produced by multidimensional scaling. Note that δπ inherits the follow-

ing properties from the action trace metric δtrace:

• δπ(s, t) ≥ 0 (non-negativity);

• δπ(s, s) = 0 if s = s;

• δπ(s, t) = δπ(t, s) (symmetry);

43

• δπ(s, u) ≤ δπ(s, t) + δπ(t, u) (triangle inequality).

Unlike a true metric, δπ(s, t) may be zero for some sensory states s and t that

differ but result in the same sequence of actions, so δπ is a pseudo or semi-metric

[11]. Chapter 7 contains an example of aliasing caused by identical action traces. In

cases where π produces unique action traces for each start state, δπ is a metric.

The central claim of this thesis, is that these low-dimensional points and the

distances between them can be used to represent external world geometric properties

of the corresponding sensor states. This claim will be evaluated experimentally over

several chapters using the evaluation methods discussed in the next section.

3.2 Evaluating Sensorimotor Embedding

As shown above, sensorimotor embedding learns geometry, since the result of sen-

sorimotor embedding is a set of points with a metric. For sensorimotor embedding

to be useful, what is learned has to also be grounded, meaning that it has to model

useful external world properties. The central claim of this thesis is that sensorimotor

embedding generates low-dimensional points and a distance function that reflects im-

portant geometric properties of the external world. Several approaches to empirical

evaluation of this claim are presented in this section.

3.2.1 Procrustes Analysis

A robust comparison of geometry in the environment with the result of sensorimotor

embedding is possible using Procrustes analysis. Procrustes analysis compares two

sets of sampled points, by normalizing all points in two sets so that the mean of

the points is zero, scaling all points so that the root mean squared distance of all

the points from the origin is one, and removing any difference in rotation between

two point sets. The result of this analysis is a measure of the distance between the

44

two point sets, computed as the residual error after correcting for translations, scale

changes, and rotations.

Centering each point set removes differences in translation. The first step

of Procrustes analysis computes the mean of two sets of corresponding points,

((x1, y1), (x2, y2), . . . , (xk, yk)) where xi and yi are points int Rn. The mean of these

points is (x̄, ȳ) where

x̄ =
x1 + x2 + · · ·+ xk

k
, ȳ =

y1 + y2 + · · ·+ yk
k

. (3.3)

These points are translated so that their mean is at the origin, (xi, yi)→ (xi− x̄, yi−

ȳ). For two corresponding point sets let,

X̄ =


x1 − x̄

x2 − x̄
...

xk − x̄

 , Ȳ =


y1 − ȳ

y2 − ȳ
...

yk − ȳ

 . (3.4)

The Frobenius norm is given by,

||A||F =
√

trace(A∗A) =

√√√√ k∑
i=1

n∑
j=1

|aij |2, (3.5)

where A∗ denotes the conjugate transpose of A. Next the scale component is removed

so that the Frobenius norm for X and Y are both one. The scale is given by,

sx = ||X̄||F (3.6)

sy = ||Ȳ ||F . (3.7)

The point coordinates are divided element-wise by their initial scale

(xi, yi)→ ((xi − x̄)/sx, (yi − ȳ)/sy)). (3.8)

The next step of Procrustes analysis finds the rotation of one point set that minimizes

the sum of squared distance between the corresponding points. For the translated

45

and scaled point sets, let

X =


(x1 − x̄)/sx

(x2 − x̄)/sx
...

(xk − x̄)/sx

 , Y =


(y1 − ȳ)/sy

(y2 − ȳ)/sy
...

(yk − ȳ)/sy

 . (3.9)

To find the best rotation matrix requires solving the orthogonal Procrustes

problem, R = argminΩ ||XΩ − Y ||F , subject to the constraint ΩTΩ = I [22]. The

optimal solution can be found by applying singular value decomposition (SVD) to

XTY . So if M = XTY then applying SVD to M gives M = UΣV ∗. And the

solution for R is UV ∗. This result is proved in [57].

After translation, scaling, and rotating the corresponding point sets, the re-

maining sum of squared distance between the point sets is given by

Procrustes Error = ||XR− Y ||F . (3.10)

This quantity is also known as Procrustes distance, and measures any remaining

differences between the corresponding point sets that cannot be explained by trans-

lation, scale, or rotation.

Comparing shape is an important problem in many fields, and comparing

shapes from sampled points is a critical issue in fields as diverse as biology and

anthropology. Procrustes analysis, named after the Greek innkeeper who guaranteed

the perfect bed for every guest, not by changing the size of the bed but by (ruthlessly)

changing the size of the guest, is a generally accepted statistical method of performing

this analysis.

As is evident in Figure 3.1, Procrustes error is low when the difference be-

tween point sets is explained by changes in translation, scale and rotation. Non-

linear changes and noise increase Procrustes error. This method can be used to

evaluate manifold learning methods, including sensorimotor embedding, by compar-

ing a ground truth sample set of points to an associated set of points generated via

46

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Shape Template

20 40 60 80 100 120 140 160 180
20

0

20

40

60

80

100

120

140

(b) Linear Change

15 10 5 0 5 10 15
30

20

10

0

10

20

30

(c) Non-Linear Change

Figure 3.1: Procrustes Error Example. On the left sample points are taken from

a basic shape. The samples are then linearly transformed in the center image. In the

right image, a non-linear transformation is applied to the sample points, transform-

ing the points into a circle. Procrustes error is measured between the transformed

and template samples. The Procrustes error for the center image is less than 6e-6.

The Procrustes error for the right image is 0.12. Procrustes error increases if the

transformation of the underlying points is non-linear. A low Procrustes error between

ground truth samples and transformed samples generated via manifold learning in-

dicates that the manifold learning method preserves linear relationships among the

sample points.

47

manifold learning [71]. If the point comparisons are faithful up to a linear transfor-

mation, then the Procrustes error will be low. Intuitively, ground truth shapes in

the environment will correspond to the same shapes in the point set generated by

manifold learning.

3.2.2 Feature Utility

Another approach to evaluating sensorimotor embedding is to attempt to use the

output as a feature for learning a task. If sensorimotor embedding learns a grounded

geometry, then tasks which depend on knowing that grounded geometry should be

easy to learn. Using this method of validation requires an agent learn the task using

ground truth information, followed by an agent learning the task using features based

on sensorimotor embedding. If the agent with access to ground truth information can

learn the task, and if the agent using sensorimotor embedding can also learn the task,

then the features that result from applying sensorimotor embedding enable learning

in cases where ground truth information is not available to the agent. This method

of validation also indicates that, as a component of a developmental program, the

output of sensorimotor embedding can support other learning tasks.

3.2.3 Distribution of Eigenvalues

The distribution of eigenvalues is another method of evaluation that is widely used

in manifold learning literature. For methods of manifold learning that involve eigen-

decomposition of a matrix, the resulting eigenvalue magnitudes represent the amount

of variation explained by each eigenvector in the decomposition. For example, if the

original data lies on a two dimensional plane in higher dimensional space, then the

data only varies in two dimensions and principal component analysis should result

in two non-zero eigenvalues corresponding to the two dimensions of variation in the

original dataset (Figure 3.2).

48

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2
0.0

0.2
0.4

0.6
0.8

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(a) A Plane in 3D

0 1 2
Component

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
ig

e
n
v
a
lu

e

(b) A Scree Plot

Figure 3.2: Scree Plot. The plot on the left shows a set of points that lie on

a plane in three dimensional space. Using PCA, these points can be transformed

into points in a two dimensional space. The magnitude of eigenvalues associated

with each component indicate how much variation is explained by each component.

Manifold learning methods seek to explain data in the fewest number of component

dimensions. In cases where eigenvalues are generated, these provide an indication of

how many components are needed to model the data.

49

Manifold learning methods seek to explain the data in the fewest number of

component dimensions. When eigenvalues are generated, the magnitudes indicate

how many components are needed to model the original data. Having a small num-

ber of concentrated eigenvalues is so important that some approaches to manifold

learning, like maximum variance unfolding, attempt to minimize the number of non-

zero eigenvalues directly (see Chapter 2 Section 2.3.5 for more details). A plot of

the distribution of eigenvalues is known as a scree plot. Scree plots provide visual

evidence that the distribution over eigenvalues is concentrated.

3.3 Discussion

Learning a policy is a crucial component of sensorimotor embedding. As mentioned

previously, policies are functions from states to actions. Maximization of expected

future reward is the criterion used to select policies, and policies are trained with

respect to a reward function. In the experiments presented in subsequent chapters,

the reward function is based on simple perceptual goals.

Studies show that humans have preferences that can be interpreted as per-

ceptual goals. For human subjects not all perceptual states are considered equal,

and people behave so as to bring about preferred perceptual states. For example,

humans prefer certain perspectives on objects as shown in studies of adults [31] and

infants [49]. Self-generated view preferences include:

• planar views over 3/4 views,

• flat surfaces aligned with line of sight, and

• upright orientation of objects with respect to gravity.

Not only are self-generated object views in adults biased towards planar views,

this bias actually results in faster object recognition [23, 31]. Passive viewing of

50

(a) 12-18 Months (b) 30-26 Months

Figure 3.3: Development of Viewpoint Bias. The left plot shows dwell times

as a function of orientation for infants ages 12-18 months. The right plot shows

dwell times as a function of orientation for infants ages 30-36 months. These plots

demonstrate a perceptual biase in preferred orientation that strengthens with age

[49].

objects where the views are biased significantly decreases in recognition time over

unbiased passive viewing, and the ability to generate views by manipulating objects

results in even faster object recognition.

Studies of dwell times for infants of increasing age and show that the bias

exists in the youngest infants tested but increases with age (Figure 3.3) [49]. Dwell

times are the amount of time subjects spend observing an object from a particular

perspective. Non-biased self-generated views would result in uniformly distributed

dwell times and uniform dwell time plots (which average over multiple subjects).

Data shows that both infants and adults spend more time on particular perspectives.

The evidence indicates that in humans, certain perceptual goal states are preferred,

and manipulation policies favor these perceptual states.

Another source of perceptual goals is visual saliency. A basic saliency model

51

(a) Normal Image (b) Saliency Map

Figure 3.4: Visual Saliency Example. A saliency map of a plant using the method

of Itti and Koch [30]. This uses only features present in the image to drive visual at-

tention. Such bottom up features have proven to be surprisingly effective at modeling

visual attention. The effectiveness of saliency maps provides evidence of perceptual

goal states that can be formed using only bottom-up features.

built using only “bottom up” features was found to be very predictive of visual

attention [29]. An example of these saliency maps is shown in Figure 3.4. The Itti

and Koch model of saliency only used features present in the image, not any specific

task indicators, to develop an accurate model of visual attention for human subjects.

One unifying theme in these psychological findings is that the perceptual

goals that drive actions can be based on simple low level sensory features, indicating

that simple perceptual goals tend to serve a role very similar to reflex actions in hu-

man development. Since both full sensory understanding and motor control systems

are very complex, a developmental approach bootstraps using simple reflexes and

simple perceptions. Some of these perceptual targets may be available very early

on in development. For example, infants as young as two days old have shown a

preference for mutual gaze, indicating that infants at this early age are already able

to identify faces as perceptual targets. For this thesis, the important point is that

52

perceptual goal states based on bottom-up features exist in natural systems and so

are a reasonable reasonable prerequisite for sensorimotor embedding.

For reward functions that provide positive reward only at perceptual goal

states, there is a useful special case of policies called ballistic policies. A policy, π,

is a ballistic policy if π(s) results in an action that takes an agent immediately to a

perceptual goal state. In other words, each action trace has length one. If the agent

can learn a ballistic policy, then the agent can associate with each sensor signal an

action space coordinate corresponding to the ballistic policy. The agent can then

infer geometry in the action space directly.

3.4 Conclusion

Sensorimotor embedding uses a learned policy to associate an action trace with each

start state. These action traces are then compared using a metric. Dimensionality

reduction is applied to a set of action trace comparisons. The result of dimensionality

reduction is a set of low-dimensional points that represent, for certain tasks, the

geometric relationships among the start states of each action trace. The quality

of this representation can be evaluated using Procrustes analysis, feature utility,

and by examining the distribution of eigenvalues. The following chapters will show

how sensorimotor embedding can be applied to learn geometric features in several

different domains.

53

Chapter 4

Learning the Geometry of the

Foveated Retina

The human vision system has two important properties: Retinas are foveated and

eyes have the ability to saccade. These two properties are sufficient to simultaneously

learn the structure of receptive fields in the retina and a saccade policy that centers

the fovea on points of interest in a scene. Sensorimotor embedding is applied in

this domain to learn the receptive field structure. The results are evaluated using a

roving eye robot on synthetic and natural scenes, and physical pan/tilt camera. In

each case learned geometry is compared to actual geometry, and the learned motor

policy is compared to the optimal motor policy. In both the simulated roving eye

experiments and the physical pan/tilt camera, sensorimotor embedding is able to

learn both an approximate sensor map and an effective saccade policy.

4.1 Motivation

In the human eye, the retina is a non-uniform array of photoreceptive rod and cone

cells. The human retina has a foveal pit, a single region of maximum density of cone

54

photoreceptors. In addition, a human can change the location of the retina relative

to a scene through ballistic actions known as saccades [48]. The combination of a

small, high-resolution fovea with the ability to saccade to regions of interest is an

economical strategy for both humans and robots to achieve high-resolution vision

across large fields of view.

Gathering and interpreting visual information requires a motor map and a

sensor map of the retina. The motor map encodes the motor commands necessary to

move the eye to new locations in the visual scene and is used to generate saccades.

The sensor map represents the geometric structure of the retina, specifically the

positions of sense elements within the sensor array, and can be used to perform

geometric operations on the visual signal such as edge detection. By exploiting the

relationship between motor commands and sensor geometry, an autonomous agent

with foveated vision can simultaneously learn both the motor and sensor maps.

For simple sensors, these maps can be manually specified, but as sensors

become more complex and adaptive, learning approaches are of increasing value to

robotics. In addition, as lifetimes of autonomous robots increase, the robust nature

of this developmental approach will allow robots to adapt to changing sensors and

motors. In previous work on learning motor maps for saccades, the learning was

driven by the two-dimensional difference between the pre-saccadic and post-saccadic

position of a target on the retina. These models assume that the structure of the

retina is known when learning the motor map, allowing calculation of the distance

between a target and the fovea [47, 55].

Sensorimotor embedding is appropriate for cases with an easily identifiable

reward signal (e.g. activation), linear ballistic motor commands, and a high number

of sense elements. The algorithm exploits the structure of the sensorimotor domain

to produce an explicit mapping between motor commands and sensor features. This

map has two interpretations: as a primitive behavior that maximizes reward (the

55

policy interpretation), and as a structure for the sensor array (the geometric inter-

pretation).

This work presented here demonstrates that sensorimotor embedding can

learn sensor structure from sensorimotor experience. The developmental nature of

sensorimotor embedding allows an agent to simultaneously adapt both geometry

and policy to changes in the physical model of the retina. The agent demonstrates

adaption in the case of retinal lesioning and vision reversal.

4.2 A Foveated Retina Model

The abstract model of the foveated retina is inspired by the anatomy of the human

retina. In this model, a retina is a collection of receptive fields, or sense elements,

with fixed geometry arrayed across a two dimensional surface. Each receptive field

responds to sensory input from a portion of an image or scene according to its own

activation function. The learning rule requires that the distribution of activations

across the retina be non-uniform and achieve a single maximum at the fovea. In

addition, under this model, ballistic motions instantaneously change the location of

the retina in an image or scene.

Figure 4.1: Fovea Model. This implementation of the fovea consists of overlap-

ping layers of receptive fields. As the layer resolution increases, the extent of each

receptive field decreases, and the number of bits necessary to describe the layer state

remains constant. This model is useful since the fovea, as a region of high resolution,

provides a natural perceptual target for the agent.

56

In this implementation, the learning agent has a foveated retina with N layers

of receptive fields (Figure 4.1). Each layer has receptive fields of uniform extent and

resolution. Layers with higher resolution and smaller extent overlap layers with

lower resolution in the center of the retinal field of view. The fovea is the region

with the highest concentration of overlapping receptive fields, and is also the region of

maximal activation, so this implementation satisfies the model assumptions specified

above. Alternative implementations satisfying the model assumptions should behave

similarly.

The implementation of each individual receptive field may also vary. In this

case, each receptive field must map a patch of underlying pixel or sensor values to

an activation level. Let Ik denote the image patch that affects the state of the kth

receptive field. Let I denote the set of all such patches.

In addition to the image patch associated with each receptive field, the ac-

tivation depends on the global state of the entire retina. In the case of a pan/tilt

camera, the retina state can be described using the horizontal and vertical angle of

the camera lens (θ, φ). In the case of the roving eye, the state of the retina can

be described in terms of the horizontal and vertical offsets (u, v) that describe the

position of the retina in the larger image. However the state space is parameterized,

S denotes the set of all states.

Receptive fields implement an activation function δ : I × S → [0, 1]. Thus,

δ(Ik, s) is the total activation of the pixels in the image patch Ik given the current

retina state s, normalized to [0, 1] as a fraction of the maximum possible activation.

The activation over the entire retina is the sum of the activations for each

receptive field for the current retina state, i.e.

RI(s) =
∑
Ik∈I

δ(Ik, s). (4.1)

57

4.3 Learning Saccades

Saccades result in 2D displacements of the image on the retina or pan/tilt changes for

a physical camera. Each action or saccade a : S → S is described by a two-element

vector denoting horizontal and vertical motion and results in a single globally rigid

transformation of the image or scene.

If the receptive fields in the retina are of uniform size and distribution, and

they are exposed to input consisting of a small spot of light against a uniform back-

ground, then RI(s) would be approximately constant for all retinal states s, regard-

less of where the spot of light falls. However, with a foveated retina, RI(s) will have

a dramatic maximum for retina states that cause the spot of light to fall on the

fovea, due to the larger density of receptive fields there.

Using the total activation of all the receptive fields for the current retina

state, RI(s) in Equation 4.1 as the reward, combined with saccade actions, defines

a simple reinforcement learning problem. The goal is to find a policy, or choice of

action, that maximizes retinal activation.

The global learning problem factors into an individual learning problem for

each receptive field. The goal of each receptive field is to learn a policy that greedily

maximizes the total retinal activation RI(s),

πk(s) = arga maxRI(a(s)). (4.2)

The problem is episodic and spans a pre- and post-saccade state. The collective

policy π∗ for the entire retina is the weighted average of the actions preferred by the

individual receptive fields,

π∗(s) =
1

RI(s)
∑
Ik∈I

δ(Ik, s) · πk(s). (4.3)

In this factored learning problem, the only information a receptive field has

about the state of the retina is the intensity level for that receptive field’s visible

58

patch Ik. If the intensity is high (i.e. δ(Ik, s) is close to 1), then the policy πk(s) will

have a large impact on the global policy calculated in Equation 4.3. In this case, the

policy should suggest an action πk(s) = a that maximizes the reward RI(a(s)). The

action that accomplishes this goal takes the activation that the current receptive

field sees and shifts it to the fovea, where the density of receptive fields is higher.

If the intensity is low, then the policy for that receptive field will have lit-

tle impact on the policy for the entire retina since δ(Ik, s) is close to zero. As a

consequence, πk(s) can be treated as a constant. So, in the factored problem, each

receptive field only needs to estimate the optimal action and observe its own intensity

level.

After sufficient training, the action specified by πk will approximate the sac-

cade that moves an image-point from receptive field k directly to the fovea. Consider

the inverse −πk of the policy estimate for each receptive field. This is the action

that would move an image-point from the fovea to the receptive field k. In other

words, the inverse of the policy is a position for the receptive field relative to the

fovea. Physically proximate receptive fields will have similar saccade policies, and

hence similar learned positions. Note that the agent has not used any knowledge of

the location of receptive fields within the fovea. In fact, that knowledge has been

learned by the training process, and is encoded in the policy πk. Spatial knowledge

that was implicit in the anatomical structure of the retina becomes explicit in the

policy.

The reinforcement learning problem described above has two unusual prop-

erties that constrain the choice of learning algorithm. First, the action space is

continuous (as opposed to small and discrete). Second, the problem is episodic, and

each episode spans only one choice of action, making it equivalent to a regression

problem.

During learning, each receptive field maintains an estimate for πk, the current

59

best action, and Rk, the current maximum estimated reward after performing the

current best action. Initially, each πk is set to a random action, and the reward

estimate is initialized to zero.

At the beginning of each iteration or training, the retina is randomly repo-

sitioned. For exploration, some noise ε is added to the current greedy policy. The

retina agent executes π∗(s) + ε, and measures the reward (R). Each individual re-

ceptive field’s reward estimate and current policy are updated proportional to its

state activation prior to the saccade (i.e. δk = δ(Ik, s)) since the optimal policy π∗

is weighted according to those activations. A moving average learning rule updates

both the reward estimate and current policy. For each receptive field k, the reward

is updated as follows

Rnewk =


Roldk + δk · α · (R−Roldk) if R > Roldk

Roldk otherwise.
(4.4)

If the reward received, R, is greater than the current reward estimate, the

current policy πk for that receptive field moves closer to the global policy responsible

for the increased reward

πnewk = πoldk + δk · α · (π∗ − πoldk). (4.5)

The next section presents the results of applying sensorimotor embedding in

a simulated domain and using a pan/tilt camera. The robust nature of the approach

is evaluated using a lesion experiment and a vision inversion experiment.

4.4 Experiments

Experiments are presented in three sections. The first tests sensorimotor embedding

in a simulated environment with a single light source. In the next section lesion and

60

inversion experiments will show that sensorimotor embedding is robust to change.

The third section applies the same algorithm to natural scene images and a physical

pna/tilt camera, showing that the approach continues to work using real world data.

4.4.1 Simulation Experiment

0 1000 2000 3000 4000 5000

0
1
0

2
0

3
0

4
0

5
0

Timestep

A
ve

ra
g
e
 R

e
ce

p
tiv

e
 F

ie
ld

 D
is

p
la

ce
m

e
n
t

Figure 4.2: Learned Sensor Geometry in Simulation. This figure plots the

mean geometric error as a function of training time. The mean and standard errors

are shown for 10 independent training runs using a single dot image. The subfigure

shows the result of interpreting learned receptive field policies as positions. Each

line represents the error between the true position and learned position — the head

(dot or diamond depending on the layer) is the true location of the field. The tail

is the learned position. For clarity, only two layers are shown. The plot shows that

error decreases as the training time of the saccade policy increases.

The simulated foveated retina had four layers of receptive fields and was

61

trained on an image with a single white spot on a black background, meant to

simulate the result of a saliency map. Each retina layer contained 32× 32 receptive

fields. The extent of each receptive field varied by layer, with the largest layer having

receptive fields of size 4 × 4 (for a total retinal pixel area of 128 × 128). Actions

corresponded to horizontal and vertical translations of the retina across the image.

The policy for each receptive field was randomly initialized. The training rate was

α = 0.5. ε was normally distributed with a mean of 0 and a standard deviation of

10 pixels.

The first criteria for success computes the mean of the Euclidean distances

between the learned position (interpreted as the additive inverse of the policy) and

the true position pos(Ik) of all receptive fields (Equation 4.6). Since translations of

the roving eye retina are specified in pixels, this analysis compares pixel positions to

action space positions. In experiments using a pan/tilt camera, ground truth actions

are not available. The results of training are shown in Figure 4.2.

Egeometry =
1

N

N∑
k=1

|| − πk − pos(Ik)||2 (4.6)

For the second criterion, comparisons are made with the accuracy of the

learned saccade against the optimal saccade, which would center the retina on the

area of high activation. Two-saccade accuracy, where the retina makes a second

saccade after the first during testing but not training, was also examined.

During the training process, every 100 training steps, training was stopped

and single saccade and two-saccade accuracy for 30 random repositions were per-

formed. The average and standard errors of the accuracy over 10 training trials are

shown in Figure 4.3, which also includes comparisons with a randomly initialized

policy and an optimal policy (where each policy is initialized to the inverse of that

receptive field’s position).

The learning algorithm achieves near-optimal saccade accuracy after 5000

62

training steps. Comparing Figures 4.2 and 4.3, the geometric error decreases as

accuracy increases, though the final sensor map only approximates the true positions

of the receptive fields. The algorithm’s final saccade error of five pixels is less than

that of Pagel et al. [47] and requires only a quarter of the number of training steps.

4.4.2 Lesion and Vision Reversal Experiments

In natural scenes, or in cases where the number of receptive fields in the fovea changes

as with macular degeneration, the maximum achievable reward changes. In these

cases, the maximum achievable reward may decrease to a level below the current

reward estimate for each receptive field, R < Rold
k and so no updates will take place.

To account for this kind of variation over time, the learning rule can be changed to

maintain a recency-weighted average estimated reward, instead of maintaining an

estimate of maximum reward.

This learning rule requires that the reward estimate be updated each timestep

Rnewk = Rold
k + δk · α · (R−Rold

k), (4.7)

instead of only updating during timesteps where R > Rold
k .

In order to test adaptation, a small off-center part of the foveal region was

lesion of the retina after 2000 steps of normal training. The mean post-saccade

activation increases after lesioning when the agent uses the the robust learning rule

(Figure 4.4), which may require more samples. The basic learning rule, however,

does not adapt to the lesioning event.

Even though the reward estimates for each receptive field would adjust down-

ward after a large change in the semantics of the motor commands, exploration still

depends on adding noise to the previous policy estimate for each receptive field. In

cases where the motor model changes radically, this exploratory bias may handicap

any attempt to adjust.

63

Humans have shown some capacity for adapting to drastic changes in senso-

rimotor experience. For example, in a self study using prismatic inverting eye-wear,

Dolezal reported both initial difficulty in simple reaching tasks followed later by

comfortable mastery [15].

In Dolezal’s inverted perceptual world, pointing up results in the visual per-

ception of pointing down. By reversing the result of a motor command along one

axis, it is possible to simulate a similar (but less complex) change in the relationship

between the motor actions and perceptual response. Though this experiment does

not capture the full range of altered sensorimotor contingencies, the experiment il-

lustrates the need for a different kind of adaption in the face of significant changes

in sensorimotor contingencies.

In this modification, each receptive field maintains an estimate of the optimal

reward and policy as before. The retina also maintains an estimate of the maximum

observed reward, a moving average of all the observed rewards, along with the reward

estimates associated with each receptive field. The exploration/exploitation trade-

off is driven by a parameter, γ, that measures the extent to which the learned policy

for currently active receptive fields will be able to achieve the maximum observable

reward as estimated by the retina as a whole.

For a given pre-saccade retina state s, compute both the current action es-

timate a and the reward estimate ra. The parameter γ is then the ratio of ra to

rmax, the maximum observed reward for the entire retina. Intuitively, if ra is close

to rmax then the action a is likely close to optimal, and so little exploration is neces-

sary. Similarly, if ra is less that rmax, the action a is likely suboptimal, and so more

exploration is required. The actual action taken is then

γa+ (1− γ)aexp,

where aexp is a random saccade.

A large negative change in the moving average of all the rewards served as

64

an indicator of a major change to the retina motor or sensor map. When detecting

this kind of change, the retina resets the reward estimates of all the receptive fields

to their original values. This significantly decreases γ, triggering an increase in

exploration and decreasing the contribution of the previously learned policy.

4.4.3 Natural Scene and Pan/Tilt Experiments

To recapture the features of the single spot case in natural scenes required construct-

ing a proto-saliency map from natural scenes by first blurring the image under the

retina using a Gaussian blur with a 5x5 filter size. Blurring is incompatible with the

assumption that geometric information is not available. However, this blurring step

is meant to simulate the optical characteristics of infants during early development

[61]. The image is thresholded and pixels fall into the top one percent brightness

level in the region under the retina are included. If the number of active pixels is less

than 500 pixels, the agent proceeds to train on that portion of the image, otherwise

the agent performs a new random saccade without training. This process avoids

training in situations of homogeneous brightness that wash out any existing progress

on learning the optimal policy.

Note that humans tend to avoid saccades to areas of high luminance at low

spatial scales (e.g. sky, solid colors) [74]. By avoiding training when the number

of active pixels after thresholding is too high, the agent avoids training on precisely

these kinds of high-luminance inputs.

Due to the variation in learning performance across images, the model was

trained over subsets of images randomly chosen from the Berkeley segmentation

dataset [39]. For each run, a set of images (N=1, 5 or 10) to train over was selected.

Training proceeded by cycling through the images, training 19 times over each image

before moving to the next image in the cycle to continue training. To evaluated the

learning performance geometric errors were measured every 100 steps of training.

65

The results are shown in Figure 4.6.

Even though the final error rates are higher than when trained with the

synthetic scene (Section 4.4.1), note that the fixed point behavior of the policy

(allowing repeated corrective saccades) does result in accuracy comparable to what

training achieves on an ideal version of a saliency map after a similar number of

training steps. Table 4.1 shows the accuracy after one and two saccades, as well as

after the number needed to reach a fixed point (or in rare cases, a cycle – in which

case the closest cycle point is counted).

Table 4.1: Saccade Accuracy. This table shows accuracy in pixels of a single

saccade, two saccades in succession, and after repeated saccades reach a fixed point.

Saccades from low resolution regions of the retina have decreased accuracy. Multiple

successive saccades can compensate for this decrease in accuracy.

1 Saccade 2 Saccades Fixed Point

20.4 12.5 7.6

For the physical pan/tilt experimental setup, a Logitech QuickCam Orbit AF

was placed 15 feet from a single light source. To reduce training time, the exploration

policy did not search randomly for a bright light. The agent performed a random

saccade away from the light source. During training the agent than performed the

opposite saccade back towards the light source, and used the resulting retinal activa-

tions to learn a function from field activation to optimal saccades using the algorithm

described with the proto-saliency method. Unlike a learned policy, this open-loop

training policy cannot account for relocation of the salient light source.

Figure 4.7 shows the decrease in saccade error and the increase in post-saccade

reward (or activation) after intervals of 100 training steps. Each data point is the

mean of 10 test trials. Each trial randomly saccades away from the light source,

then computes the return saccade as the activation-weighted average of the learned

66

receptive-field policies. For a trained retina, the post-saccade reward is independent

of the initial random saccade, since the state of highest reward is reachable from any

random starting position.

In the simulation experiments, the learned policies correspond to ground-

truth pixel geometry, since actions for the simulated roving-eye camera are pixel

unit translations over an image. The action space of the pan/tilt camera, however,

is not represented in pixel-unit shifts. The motor commands represent control signals

sent directly to the piezoelectric motors in the camera apparatus. Camera geometry,

along with irregularities in camera control, make the correspondence between motor

signals and pixel shifts in the field of view necessarily inexact. The geometry of

these action space coordinates approximates (up to a scale factor) the ground truth

geometry of the receptive fields in pixels. These experimental results confirm that,

under simple assumptions, an agent can simultaneously discover motor and sensor

maps for a foveated retina. Previous approaches to sensor map construction use

dimensionality reduction techniques and do not exploit additional available domain

structure, namely access to motor commands.

4.5 Discussion

The experiments presented in this chapter show how sensorimotor embedding can

be used to learn the structure of a foveated retina. The the pattern of activation

over a foveated retina provides a natural perceptual goal for agents learning sensor

structure. The ballistic nature of the saccade actions means that the actions can

be directly associated with sensor element coordinates. This property of ballistic

properties was discussed in Chapter 3. The sensorimotor embedding approach to

learning sensor geometry was able to adjust to lesion and reversal events, and learn

from real-world data.

67

4.6 Conclusion

An agent can use sensorimotor embedding to learn sensor structure. In the next

chapter, an agent will apply sensorimotor embedding to the problem of learning

robot pose in both a Gridworld and Roving Eye domain.

68

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

Timestep

A
ve

ra
ge

 S
ac

ca
de

 E
rr

or
 (

P
ix

el
s)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
● ● ●

● ●
● ●

● ● ● ● ●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

● ●
●

●
● ●

● ●

●

●

Random
Learning: Single Action
Learning: Double Action
Optimal: Single Action
Optimal: Double Action

Figure 4.3: Saccade Policy Training. The saccade error as a function of the

number of training iterations using the learning algorithm. The saccade error is

computed over thirty random repositions every 100 timesteps for 10 independent

trials. Note that even with an optimal policy, saccades are not entirely accurate

because of low resolution in the periphery of the retina. The error decreases with

training time.

69

0 1000 2000 3000 4000 5000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Timestep

M
e

a
n

 A
ct

iv
a

tio
n

Simple
Robust

Figure 4.4: Lesion Results. Lesion at T=2000. As a result of lesioning, a retina,

with a robust learning rule as described in this section, adapts its policy to favor

saccades to regions just outside the damaged region (as shown in the subfigure),

providing higher post-saccadic activation in the case of lesioning than the previous

optimal saccades directly to the fovea. Note that this mechanism increases the posi-

tion error relative to the ground truth, but provides a coordinate system consistent

with the sensorimotor properties of the damaged retina. The basic learning rule fails

to adapt following a lesioning event. With the modified learning rule, sensorimotor

embedding can detect and adapt to a lesion event.

70

Motor Reversal

Reset

R
e
w

a
r
d

 E
s
ti

m
a
te

Figure 4.5: Vision Reversal. Vision reversal is simulated by switching the up

and down motor commands. The moving average estimate of rewards experienced

during training. A reversal that occurs after 4000 timesteps results in a decrease

in the moving average reward estimate. After decreasing over 1000 timesteps, the

retina resets the rewards estimate and the estimates for each receptive field and

begins adapting to the new situation. This shows how sensorimotor learning can

relearn important geometric features.

71

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

Timestep

R
ec

ep
tiv

e
F

ie
ld

 D
is

pl
ac

em
en

t
N=10
N=5
N=1

Figure 4.6: Natural Scene Image Results. Subsets of natural scene images were

chosen randomly. This graph shows the mean and variance of ten runs for each

subset size and is best viewed in color. Training across sets of images results in

more consistent learning curves than training over single images, since the variance

is smaller for training that takes place across subsets. Even in the single image case

(where each run drew training examples from a single image) the mean learning

curve was qualitatively similar to the others, but the high variance suggests that

some images are “bad” sources of training examples. The agent did learn a saccade

policy and retina geometry with an average error of 20 pixels. This demonstrates

that sensorimotor embedding can learn sensor geometry on real world data.

72

−800 −600 −400 −200 0 200 400 600 800
−1000

−800

−600

−400

−200

0

200

400

600

800

o o

o

o

o o

o

o

o

o

o

o
o

o

0 200 400 600 800 1000 1200

Training Examples

+ +

+

+

+

+

+
+

+
+

+
+

+ +

0
2

4
6

8
1
0

1
2

0
2
0
0

4
0
0

6
0
0

8
0
0

A
ve
ra
g
e
 S
a
cc
a
d
e
 E
rr
o
r
in
 D
e
g
re
e
s

A
ve
ra
g
e
 P
o
st
−
S
a
c
ca
d
e
 R
e
w
a
rd

o
+

Right Axis
Left Axis

Figure 4.7: Pan/Tilt Results. Every 100 training timesteps, 10 test trials were

performed with the pan/tilt camera, randomly saccading away from the light source,

then using the learned saccade policy to attempt to recenter on the light source (as

opposed to using the inverse of the random saccade as in training). As training

progresses, each receptive field learns a policy that centers local activation at the

fovea resulting in greater post-saccade reward (dashed line) and lower saccade error

(solid line). The subfigure shows the corresponding action space coordinates of each

receptive field for two different layers of receptive fields after training. The pan/tilt

results show that sensorimotor embedding can recover sensor geometry on a physical

robot.

73

Chapter 5

Learning Robot Position

In this chapter, sensorimotor embedding is evaluated by learning about the geome-

try of two simulated robot domains. The results show that sensorimotor embedding

provides a better mechanism for extracting geometric information from sensorimotor

experience than standard dimensionality reduction methods. The first, Gridworld,

is a simple discrete type of Markov decision process meant to establish whether geo-

metric information concerning the location of states in the domain can be extracted

from policy trajectories using sensorimotor embedding. The second, RovingEye,

provides an environment analogous to the visual ego-sphere of a developing robot.

The experiments use both a value function method in the Gridworld do-

main and a policy search method in the ImageBot domain. One key question for

sensorimotor embedding is whether the policy improvements also improve an agent’s

metric understanding of position and a key empirical result established in this chap-

ter is that any method of improving an agent’s policy will also improve the accuracy

of the representation generated using sensorimotor embedding.

74

5.1 Gridworld Experiments

Gridworlds provide a simple discrete environment for analyzing the ability of dif-

ferent sensorimotor methods to recover the spatial layout of the world from the sen-

sorimotor experience of the agent. There are many algorithms for learning optimal

policies, and gridworlds provide a simple abstract model for testing these approaches.

An example gridworld used in the experiments in this chapter is shown in Figure

5.1. Though gridworld domains may seem simple, the idea of a gridworld is applica-

ble in a wide variety of modeling situations. For the experiments considered in this

chapter, the simplicity of the gridworld domain allows for a clear examination of the

properties of sensorimotor embedding.

For example, in the plain gridworld domain shown in Figure 5.1a, it is possible

to explore the impact of policy improvement on representation in a coarse way.

Consider the result of applying a random policy, and using the resulting action

traces in sensorimotor embedding. Since the policy is random, it does not contain

any information about the geometric structure of the domain. The result should also

be random. Figure 5.2 provides one such random result. For the same gridworld

environment, an optimal policy results in a faithful representation of the original

state geometry in Figure 5.1a. In fact, the Procrustes error decreases as the policy

improves (Figure 5.4).

Trajectories generated using a random policy did not lead to a reasonable rep-

resentation of the corresponding states. However, after learning an optimal policy

with Least-Squares Policy Iteration the same analysis resulted in a far more accu-

rate reconstruction of the underlying state geometry [35]. This result shows that

performing sensorimotor embedding using trajectories from an optimal policy leads

to low-dimensional coordinates of the states that follow the ground-truth arrange-

ment. This result demonstrates that optimal policies contain implicit information

about environment geometry that sensorimotor embedding makes explicit.

75

(a) Plain Gridworld (b) Bowtie

Figure 5.1: Gridworld Domains. These domains are simple discrete Markov de-

cision processes meant to illustrate how sensorimotor embedding infers geometric

information about the relative locations of states. The left domain is a standard

gridworld. The right domain replaces some states with barriers. The barriers cause

problems for embodied Isomap, but sensorimotor embedding is able to discover the

world geometry despite the barriers. The center state is the goal state. The agent

receives a reward when it enters the goal state.

76

Figure 5.2: RandomWalk Policy. This shows the result of inferring distances from

a random walk policy via sensorimotor embedding in the plain gridworld domain

(Figure 5.1a). A random policy is not optimal and does not implicitly encode any

information about geometry. The inferred locations of the gridworld states end up in

random positions after applying sensorimotor embedding to random action traces.

The gridworld environment is a convenient domain for exploring variations

on the sensorimotor embedding algorithm described in Chapter 3. For example, the

alternate method of comparing action traces, where zero actions are prepended in-

stead of appended to traces, can be easily applied in this domain. This approach to

trace length normalization produces results that appear equivalent to the standard

approach described in Chapter 3 (Figure 5.5a). The performance of sensorimotor

embedding can also be evaluated for different choices of goal state. For example, set-

ting the goal state to the upper right hand corner results in a sensible, but somewhat

skewed set of coordinates (Figure 5.5b).

In a gridworld environment as shown in Figure 5.1b, a barrier partially divides

the domain. This division creates problems for accurate reconstruction of the domain

using alternatives to sensorimotor embedding (Figure 5.6). In contrast, sensorimotor

77

Figure 5.3: Optimal Policy. Multidimensional scaling applied to the distance

matrix inferred from policies learned using LSPI [14]. Sensorimotor embedding is

able to recover the state space geometry using the learned optimal policy. The result

of sensorimotor embedding is a two-dimensional grid of states that follows the actual

geometric relationships among the states shown in Figure 5.1a.

embedding is able to faithfully reconstruct the domain geometry.

Figure 5.7 highlights the advantage of using sensorimotor embedding over

approaches that only use local distances. The sensorimotor embedding approach is

able to determine the relative locations of states that are adjacent in the original

environment, but separated by a barrier that prevents any direct movement between

them. Approaches that only use local distance cues, like Isomap and action respect-

ing embedding, as in Figures 5.6, fail to capture the global geometric structure of

the domain using only two dimensions. By analyzing action traces, sensorimotor

embedding can provide a two-dimensional representation of the state geometry that

is close to the ground truth.

Gridworld experiments highlight the properties and advantages of sensori-

motor embedding. However, one key way gridworlds fail to truly test sensorimotor

78

1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Policy Iterations

P
ro

c
ru

s
te

s
E

rr
o

r

Figure 5.4: Geometric Error and Policy Improvement. The geometric error

decreases as the policy improves with each iteration of least-squares policy iteration

(LSPI) [35]; the subplot is a visualization of an optimal policy in the Gridworld

domain used for this experiment. The closer a policy is to optimal, the less the

geometric error after applying sensorimotor embedding.

embedding, is that the sensory state is simple. For sensorimotor embedding to be ap-

plicable more broadly, it should work for the realistic sensory inputs of a developing

agent. The Roving Eye domain is one way to introduce sensory complexity.

5.2 Roving Eye

In the RovingEye domain, a simulated eye moves around a static image. The goal

of the agent is to learn to localize. This domain was used in related work learning

sensor geometry [54, 66] and learning embeddings using action labels [10]. Unlike

the simpler Gridworld domain, the RovingEye domain involves continuous action

spaces and high-dimensional perceptual inputs in the form of sub-images of a natural

79

(a) Prepend Zero Actions (b) Different Goal State

Figure 5.5: Additional Gridworld Results. The learned geometry on the left is

generated using an alternate method of comparing action traces where zero actions

are prepended, instead of appended to action traces when normalizing trace lengths.

The results are similar to those generated using the standard method. The learned

geometry on the right is the result of applying sensorimotor embedding to a gridworld

with the goal state shifted to the upper left corner. This change results in a more

skewed representation of the state coordinates.

80

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0 1

2 3

4 5

6 78 9 10 11 12

13 14

15 16

17 18

19 20

isomap

Figure 5.6: Embodied Isomap Gridworld. The two-dimensional embedding

generated using Isomap with distances drawn from the magnitude of the local ac-

tions that move between states is shown. Unlike sensorimotor embedding, embodied

Isomap does not properly reconstruct the two-dimensional structure of the gridwold

shown in Figure 5.1b.

scene. The Roving Eye domain provides a good test for the ability of this scheme

to reduce the dimension of the input data.

In the experiments in this chapter, the eye was a 128 × 128 array of pixels

(Figure 5.9). The perceptual goal states for this domain were generated by specifying

a gradient policy using a set of directional filters applied to the intensity image. By

following the gradient policy from each starting point in the image, the agent can

identify a much smaller set of local maxima, that when clustered, form a reasonable

set of perceptual targets for learning. Following the gradient from each point in the

image results in a trajectory that terminates at one of these perceptual goals. The

clusters represent the regions of attraction for these local maxima.

The principal goal of this experiment is to establish a link between the quality

of the embedding and the efficacy of the policies that bring the agent from points

in the environment to perceptual goals. To this end, several different approaches to

81

Figure 5.7: Sensorimotor Embedding Gridworld. The result of applying senso-

rimotor embedding to full trajectories. By using the full trajectories to the shared

goal state to determine interstate distances, sensorimotor embedding is able to gener-

ate an accurate representation of the relative locations of the states of the gridworld

shown in Figure 5.1b using only two dimensions.

generating trajectories of varying quality were used.

For each of the multi-step policies, the action space is limited to a set of 16

discrete actions representing movements of length 5px in 16 different directions. The

first type of trajectories used for sensorimotor embedding resulted from just following

following the gradient. For the second approach, ε-gradient, the agent followed the

gradient but choose random actions with a probability of 15%. The agent used the

highest-scoring sample trajectories as the input for sensorimotor embedding. The

third approach used a near-optimal hand-coded policy. Fourth, the agent learned a

ballistic policy using the same stochastic estimation method as in Chapter 4 [66].

Example trajectories are shown in Figure 5.10. These trajectories all attempt

to acquire the same perceptual goal. When terminating, the agent receives a reward

based on the distance to the goal. The score for a trajectory is discounted by

the number of actions taken to reach the final state. Discounting has the effect of

assigning higher scores to shorter, more efficient policies. The hand-coded policy

82

generated the highest scoring trajectories.

Procrustes analysis (Section 3.2.1 and Dryden et al. [16]) is used to evaluate

the quality of the representation that results from applying sensorimotor embedding

using each set of generated trajectories. This analysis corrects for rotation and scale

differences between sets of points before computing the residual geometric error. A

lower error implies that points are a better statistical fit to the ground truth data,

which consists of the true pose of the roving eye corresponding to each sensor signal.

The scores along with corresponding errors are shown in Table 5.1.

Note that as the average score of the trajectories (measured over a sampling of

points in the region of a single perceptual goal) increases, the error after Procrustes

analysis decreases. For comparison, classic multi-dimensional scaling was applied

to the raw intensity images, using pixel differences as a measure of dissimilarity.

That approach (the classic linear dimensionality reduction approach) resulted in the

highest error. Trajectories that score higher are more efficient and result in lower

error after performing sensorimotor embedding. Figure 5.8 shows the importance of

each component in the new representation. The better performing methods, such

as sensorimotor embedding applied to ballistic trajectories, have the most weight

concentrated on a small number of components in the new representation.

Figure 5.11 shows the result of sensorimotor embedding on randomly selected

points used in the analysis in Table 5.1. For clarity, only the ground truth poses and

the result of embedding gradient and ballistic trajectories are shown.

The ballistic trajectories result in a more accurate embedding than the gradi-

ent trajectories, as indicated by the Procrustes analysis in Table 5.1. The difference

in quality between using optimal multi-step trajectories and learned ballistic trajec-

tories indicates that discretizing the action space reduces the representational power

of this approach. Similar but less substantial improvements are observable with

other methods of generating trajectories.

83

1 2 3 4 5 6 7 8 9 10
Components

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

W
ei

gh
t

Normalized Scree Plot

Ballistic
Hand Coded
MDS (Sensor)

Figure 5.8: Scree Diagram for Roving Eye Domain. A scree diagram of the

normalized weight of the first ten components in the new representation. A compact

representation, such as that generated using ballistic trajectories, should have a small

number of high weight components. A non-compact representation, such at that

produced by MDS applied directly to sensor distances, will have a less concentrated

weight distribution.

5.3 Discussion

The experiments in this chapter demonstrate that sensorimotor embedding provides

a mechanism for representing geometry using sensorimotor experience, and that

improvements in policies result in more accurate representations of geometry. Sen-

sorimotor embedding allows agents to learn local geometry in an incremental and

scalable way. In addition, since spatial representations are derived from actions us-

ing sensorimotor embedding, the resulting geometric representations are naturally

calibrated to the agent’s own body. Sensorimotor embedding performs better than

other manifold learning methods, even methods that take into account agent actions

like embodied Isomap. By applying manifold learning methods such as multidimen-

sional scaling to action traces instead of raw sensor signals, sensorimotor embedding

is able to benefit from geometric knowledge implicit in policies.

84

Table 5.1: Roving Eye Experimental Results. As the average trajectory score

increases, the residual error after Procrustes analysis decreases. The ballistic tra-

jectories result in the smallest error, in part because the ballistic trajectories are

capable of expressing the precise distance relationships between points and goal

states. Multi-step trajectories using discrete actions (even with the near-optimal

hand-coded policy) are only capable of approximating the ground truth interpoint

distances.

MDS (Sensor) Gradient ε-Gradient HC Ballistic

Score NA 0.35 0.51 0.62 0.67

Error 0.80 0.20 0.11 0.05 0.01

5.4 Conclusion

These experiments demonstrate that agents can use sensorimotor embedding along

with interactive experience to recover the geometry of the environment in both the

Gridworld and RovingEye domains. In addition, as policies improve so do the

accuracy of the results of sensorimotor embedding, demonstrating that agents can ac-

quire geometric knowledge incrementally and robustly through policy improvements.

The next chapter will continue to demonstrate the general nature of sensorimotor

embedding by applying sensorimotor embedding to the problem of learning the pose

of a three dimensional object.

85

Figure 5.9: Roving Eye Domain. In the RovingEye domain, a simulated eye

moves around a background image. This domain is useful for evaluating sensorimotor

embedding on real world data.

86

Figure 5.10: Example Robot Trajectories. This shows three example trajectories

(gradient, ε-gradient, and hand-coded). The action sequences are used to determine

interpoint distances in the corresponding embedding. The more efficient policies

result in more accurate embeddings.

87

Figure 5.11: Example Embeddings of Robot Positions. The ground truth,

gradient and ballistic sensorimotor embeddings for a set of randomly chosen points

within the region of the largest goal state cluster are shown. Both ballistic and

gradient embeddings are connected to the ground truth with line segments. The

ballistic embedding provides the best approximation of the ground truth arrangement

of the points.

88

Chapter 6

Learning Object Pose

In previous chapters, sensorimotor embedding was applied to the problem of learn-

ing sensor structure and robot position. In this chapter, sensorimotor embedding is

applied to the problem of learning object pose, an important category of geometric

knowledge for robots and other embodied agents. As demonstrated in this chap-

ter, sensorimotor embedding performs better than standard unsupervised methods

of pose estimation, and allows the agent to solve important problems like object

alignment without complex calibration.

6.1 Motivation

Properly estimating object pose can simplify control tasks involving grasping [26]

and object recognition [56]. Many approaches to pose estimation involve either

sensor calibration, large labeled datasets, or unsupervised learning. Sensorimotor

embedding provides an alternative to existing methods that performs better than

unsupervised approaches, but does not require labeled training sets or ground truth

data usually required for calibration approaches. Instead, the agent seeks a policy

to achieve a perceptual goal. As a result of applying the policy, the agent learns to

89

associate object orientation with the visual features used as policy inputs.

For a lander on a distant comet, determining orientation might mean the

difference between aligning solar panels properly, or running down the batteries

before the mission completes. For a developing robot, knowing object pose is an

important prerequisite for other tasks, such as grasping. Sensorimotor embedding

provides a theory for how object pose can be learned from developmental experience.

6.2 Setup

For object pose experiments, a three-dimensional object is simulated using Gazebo

[32]. The object is painted using realistic textures to preserve the visual complexity

of the task. The object is lit from the front. The agent controls the object in

simulation by issuing pitch, yaw, and roll commands to manipulate the object pose.

The simulated agent has the ability to adjust the pitch or yaw of the robot by ± π
16

radians with each action. This experimental setup, though controlled by a computer

algorithm, is similar to the setup used in psychology experiments on pose bias in

humans (e.g. [31]). As discussed in Section 3.3, research shows that humans prefer

certain orientations [23]. Adults prefer:

• planar views over 3/4 views;

• flat surfaces normal to lines of sight;

• upright orientations with respect to gravity.

These biases follow a developmental trajectory. Newborns do not show as

pronounced a gaze bias as adults, but the bias increases with age (see [49] as dis-

cussed in Chapter 3). The experimental results in psychology indicate that a useful

perceptual goal when learning object pose is to seek a view on an object that is nor-

mal to a flat surface. A normal view to a flat surface would maximize total interpoint

90

distance for a set of coplanar points. So if an agent seeks an object orientation that

maximizes the coplanar interpoint distance, the agent would also show a preference

for normal views on flat surfaces. Coplanar interpoint distance can be computed for

pairs of images and forms a gradient.

The maximum defines the perceptual goal state. The gradient can be de-

termined from two images of an object taken at slightly different orientations by

collecting a set of robust features (e.g. SIFT or SURF features) from each pose.

The feature sets for each pose are f1 = {〈x1
i , a

1
i 〉} and f2 = {〈x2

i , a
2
i 〉}. Here the

xi terms are the locations of the features and the ai terms are the corresponding

feature appearances. For the appearance matched features, RANSAC [17] finds the

fundamental matrix for matched points such that for matching points x1
i and x2

j ,

x1
iFx

2
j = 0. For inliers, RANSAC again finds a homography matrix H such that

x1
i H - x2

j = 0. The remaining inliers form the coplanar feature correspondences.

Figure 6.1 shows the result of this gradient analysis on a set of varying poses around

a desired view of an object.

Least Square Policy Iteration (LSPI) is used to learn a policy for achieving

a perceptual goal state as defined by the gradient. Once an agent has a policy for

achieving a perceptual goal state, the action traces that result from application of the

policy provide the information necessary to reconstruct object pose. These action

traces consist of incremental changes of both pitch and yaw. The agent compares

these action traces as described in Chapter 3. The resulting distance matrix is

then transforming into a set of low-dimensional pose points using multidimensional

scaling.

In addition to sensorimotor embedding, PCA and Isomap were applied to

the problem of recovering object pose. PCA and Isomap were applied to image sets

consisting of many pitch and yaw object configurations in an attempt to recover the

original pitch and yaw parameters. The results of sensorimotor embedding, PCA,

91

(a) Gradient Images

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
X Pose

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Y
Po

se

Hill Climbing Direction

(b) Computed Gradient

Figure 6.1: Object Rotation and Gradient. The images used for the gradient

computation are shown on the left. The perceptual goal state depends on the gradi-

ent defined by changes in average interpoint distances for coplanar points. The right

plot shows the computed gradient using changes in average interpoint distances for

coplanar points. Using average interpoint distances for coplanar points results in a

perceptual goal state that is normal to the object surface as in human trials.

92

and Isomap were compared with ground truth data using Procrustes analysis as

described in Section 3.2.

6.3 Results

Figure 6.2 shows the ground truth pitch and yaw positions of the object used in this

experiment, and the results of applying PCA, Isomap, and sensorimotor embedding.

Procrustes analysis is used to evaluate the quality of each embedding.

The Procrustes error for PCA and Isomap in this problem is much higher than

the error for sensorimotor embedding. In addition, sensorimotor embedding has more

weight on fewer components after matrix decomposition than either PCA or Isomap,

indicating that it is modeling the variation in terms of many fewer components than

either PCA or Isomap.

In Figure 6.3, the Procrustes error after sensorimotor embedding is shown as

a function of the number of iterations of LSPI. As the policy for manipulating the

object improves, so do the results of sensorimotor embedding. The scree diagram

compares the distribution of eigenvalues between PCA and sensorimotor embedding.

As discussed in Section 3.2, a smaller number of higher value eigenvalues indicates

a better embedding.

The agent can use learned pitch and yaw coordinates as features for an align-

ment task. The agent is given a target orientation in sensorimotor space and needs

to learn a policy to align the observed object with the target. The agent is provided a

reward when the object matches the target. In this case, the output of sensorimotor

embedding provided the necessary information to make solving this task easy. As

shown in Figure 6.4, the agent was able to learn a policy in only a few iterations of

LSPI. Not only is recovering pitch and yaw from action sequences generated using a

learned policy possible, but the resulting knowledge can be used to solve a task.

93

Figure 6.2: Object Pose Results. The ground truth yaw and pitch orientations

for the pose reconstruction experiment is shown in (a). The results of PCA applied

to the object images are shown in (b). PCA does a poor job reconstructing the

ground truth object pose. The result of applying Isomap is shown in (c). The result

of sensorimotor embedding using action traces is shown in (d). The pitch and yaw

reconstruction from sensorimotor embedding is far more faithful than either PCA or

Isomap.

(a) Ground Truth (b) PCA

(c) Isomap (d) Sensorimotor Embedding

94

LSPI

(a) Procrustes Error (b) Scree Diagram

Figure 6.3: Procrustes Error and Eigenvalue Comparison. The Procrustes

error of sensorimotor embedding is compared with both Isomap and PCA over the

iterations of LSPI. As the policy to achieve the desired pose improves, so does the

agent’s knowledge of the pitch and yaw of the object at the start of every sequence.

6.4 Discussion

The results demonstrate that sensorimotor embedding can be used to recover pose

information from sets of images. Unlike unsupervised methods, sensorimotor em-

bedding requires that an agent be able to interact with or move around the object.

Though this narrows the potential applications of sensorimotor embedding, develop-

mental agents that can interact with the world would be able to learn more accurate

pose models using sensorimotor embedding. The distribution of the eigenvalues for

sensorimotor embedding provides evidence for the assertion that the manipulation

policy implicitly encodes the dimension of true variation, even if the agent actions

are complex and multivariate. Sensorimotor embedding, in relying on the action

traces and local action distances, recovers these exact dimensions of variation.

In this chapter, the agent learned a manipulation policy using LSPI. The

perceptual goal state was determined using a gradient inspired by human studies.

An agent could instead use hill-climbing directly as the policy, though in general a

95

Figure 6.4: Pose Alignment Task. An agent can solve the alignment task using

reinforcement learning over learned pitch and yaw coordinates. Learning the optimal

policy requires only a few iterations of LSPI using the input from sensorimotor

embedding.

learned policy will result in better results, particularly if the gradient is not smooth.

The gradient described in this chapter does use some general notions of the geometric

relationship between coplanar points. For developing agents, this knowledge would

have to be encoded as part of the learning toolset. Another plausible theory, inspired

by results from developmental psychology, is that these goal states are taught. That

is that, when caregivers and children are observed under controlled conditions, the

caregiver may present objects to the child in a biased way. A developing robot could

similarly be shown certain object orientations then be tasked with manipulating the

object to fit those orientations.

Taking a step back, the learning process turns thousand dimensional data into

two dimensional data using, as an intermediate step, a policy that the agent uses to

manipulate object pose and achieve a perceptual goal state. The process is shown in

Figure 6.5, and by following the process, a developing agent can recover knowledge

96

PCA

dim > 10000 dim = 20

Agent

Environment

action
atst

reward
rt

rt+1
st+1

stateRL

LSPI
80 RBF Functions

SE

dim = 2

Associate start state and
sensorimotor pose.

Figure 6.5: Sensorimotor Pipeline. The learning pipeline for geometric features

corresponding to object pose. The end result of the learning process is an association

between images of over 10,000 dimensions corresponding to start states, and two

dimensional pose features. The initial application of PCA and LSPI are described

in Chapter 2. Sensorimotor embedding uses the resulting policy to generate the

two dimensional representation of the object’s pose as described in Chapter 3. This

substantial reduction in dimension makes sensorimotor embedding an ideal method

for generating low-dimensional features.

of object pose without having to resort to unsupervised learning from images, or

preprogrammed understanding of how to infer object pose. One important area of

future work is to develop ways to associate learned object poses for different objects.

If the methods of manipulation are substantially similar, then both objects should

share the same sensorimotor space, but if actions required to manipulate the objects

are different, another method of deducing similar poses across the different objects

will be necessary.

97

6.5 Conclusion

An agent can apply sensorimotor embedding to learn object pose and use that pose

information to learn an alignment task. This method performs better than prin-

cipal component analysis and Isomap. In the following two chapters, sensorimotor

embedding will be applied to the problem of learning and using depth features.

98

Chapter 7

Learning Depth

Depth is an important form of geometric knowledge for both natural and artificial

systems. In this chapter, a developmental program learns about depth by applying

sensorimotor embedding. The agents described in this chapter have stereo vision

and can perform vergence actions. Vergence actions allow an agent to align its

eyes on a single shared point of interest. The chapter will show how sensorimotor

embedding can be used to learn depth features for agents with stereo vision and

vergence capabilities.

7.1 Motivation

In this chapter, a developmental program learns sensorimotor features for depth.

Robots can infer depth directly from certain kinds of sensors, such as laser rangefind-

ers or calibrated stereo vision sensors. The developmental program presented in this

chapter uses uncalibrated stereo vision sensors to learn depth. These stereo cameras

are capable of performing convergence actions, where both cameras rotate to align

on a shared point of interest. This is similar to humans, who use vergence cues to

infer local depth. The learned depth information can serve as a feature for learning

99

a task as discussed in Chapter 8, or as a basis for learning other, monocular distance

cues, as in human visual development [20].

By learning depth cues autonomously, a robot would be able to operate away

from any human assistance even in the case where physical changes to the robot

would normally require manual recalibration.

7.2 Setup

7.2.1 Vergence

The following experiments use vergence actions, first simulated using stereo pairs

of images, then using a robot with articulated cameras. There are several possible

approaches to implementing vergence actions. For example, a dominant eye first

tracks to a point of interest. This is followed by an action by the subordinate eye

to bring the point of interest into binocular alignment. If the simulated eyes are

connected as part of the same head mechanism, the initial motion affects both the

dominant and subordinate eyes, and the vergence action that follows affects only the

subordinate eye.

Another model of vergence involves tracking a point of interest in parallel.

Imagine a line emanating from the midpoint between two stereo sensors out towards

an object. Where an object of interest is on this mid-line determines the amount

of vergence required to bring the object into binocular alignment, meaning that the

object of interest is centered in the foveas of both sensors. Symmetric vergence ac-

tions bring both eyes into binocular alignment on the object. The degree of vergence

depends on the location of the object of interest on the mid-line. For a physical

or simulated robot, a third "wide"-angle camera at the midpoint of the foveated

cameras on a shared head mount would allow the agent to track a point of interest

in two dimensions, followed by a vergence action to bring the point of interest into

100

binocular alignment. This multi-resolution camera approach is similar to the setup

found in [21], where the authors used multiple cameras with different resolutions for

tracking and object recognition.

For human vision, eye motion consists of version and vergence components.

For the version component of motion, both eyes move in the same direction. For the

vergence component of motion, both eyes move in opposite directions. The interac-

tion between version and vergence components of motion is governed by Hering’s

Law of Equal Innervation, which states that the movement of one eye is accom-

panied by a movement of the other eye of equal amplitude and velocity, either in the

same or in the opposite direction [27]. Hering’s Law was originally interpreted to

mean that the velocities of both eyes are always equal. However, subsequent research

has shown that it is not the amplitude or velocity of the movements of the two eyes

that are equal, but the amplitude and velocity of the vergence component in each

eye and the version component in each eye. The version and vergence components

can cancel when combined, leading to unequal movement between both eyes.

This following experiments use the mid-line approach to vergence, though

future work would include a more nuanced approach to vergence based on models of

version and vergence interactions in humans.

7.2.2 Stereo Pairs

The agent learning depth from real stereo pairs consists of a left and right cameras

(similar to the Roving Eye robot as described in Chapter 5). These left and right

cameras scan along their respective images in opposite directions along the same

horizontal line. This approximates mid-line vergence actions. Both the left and right

cameras are foveated, using the same model of foveation as described in Chapter 4.

The agent controls both cameras and can perform a single action, convergence by

one pixel. This experimental setup is shown in Figure 7.1.

101

Figure 7.1: Stereo Pair Vergence. Two cameras move in opposite directions along

the same horizontal line of a pair of stereo images. These cameras are foveated. The

circled target is a point of high saliency in both images. The agent controlling the

cameras has one available action, convergence by one pixel. This experiment is used

to evaluate if an agent using sensorimotor embedding can learn depth. The stereo

pair images were taken from the Middlebury Stereo Datasets [25].

A set of shared points of interest were determined in advance using points

of high saliency. For each point, the agent’s cameras were positioned so that the

points of high salience in their respective images were of equal distance from each

camera. This could be accomplished by using a third camera located at the midpoint

between the two eyes, driven to points of high saliency using the methods described

in Chapter 5. The left and right cameras start from a fixed width. In a three

dimensional binocular robot, this initial movement would be equivalent to aligning

the head to a point of interest in a scene prior to performing any vergence action.

The agent followed a policy of converging until a reward was given. Reward was

given when the differences between both cameras was minimized.

Since the left and right cameras are foveated, the underlying pixels are not

compared when computing difference between images. Instead the components of

the fovea, which may contain many underlying pixels, are compared. Each field’s

102

value is the average of the underlying pixels. The fovea model used here is discussed

in more detail in Chapter 4.

Each field’s value in the fovea is given by average activation of all the under-

lying pixels, so for a field f consisting of a set of pixel intensities {p}, the activation

is given by

a =
1

|f |
∑
p∈f

p. (7.1)

The difference between both images is then calculated using the field activations as

d(r, l) =
∑
i

||f li − f ri ||. (7.2)

where i is the index of a field with the same coordinates in both the left and right

retinas. Pixel activations that belong to smaller fields in the high resolution fovea

have more of an impact on Equation 7.2 than pixels in the periphery of the camera

image.

In Figure 7.2, the fovea filter is applied to a portion of the image. As with the

model of foveation described in Chapter 4, salient points will have higher activation

in the fovea. In Figure 7.3, the result of saliency applied to the stereo pair is shown.

Saliency is highly correlated between both images, allowing the agent to identify

shared salient features for vergence actions.

After applying the policy, the next step in sensorimotor embedding is compar-

ing the action traces. In this experiment, the action traces are sequences of vergence

actions. The length of each sequence changes with the disparity of the target points.

Let {at}nt=1 and {at}mt=1 be two action traces consisting of a different number of

convergence actions. Let m < n. Applying the sequence space metric as described

in Chapter 3,

δ({at}nt=1, {at}mt=1) =
n∑

t=m+1

||at||. (7.3)

If the vergence actions are at = ±1 then ||at|| = 1. The distance between two

action traces in this domain is the difference in action trace lengths. After computing

103

(a) Left Fovea (b) Right Fovea

Figure 7.2: Foveated Filter Example. A portion of the aloe image with the fovea

filter applied. The fovea model is the same as in Chapter 4. To generate these

images, the activation across overlapping layers is averaged together. As the results

will show, foveation does not impact an agent’s ability to identify correspondences

between natural scene images.

104

(a) Left Saliency (b) Right Saliency

Figure 7.3: Saliency Map Examples. A saliency map of the images in the stereo

pair used to generate points of interest for the agent. These maps were computed

using the method of Itti and Koch. Salient points in one image are highly correlated

with salient points in the other image. This allows the agent to identify shared

salient features for convergence actions.

105

distances between action traces, the agent performs multidimensional scaling on the

resulting distance matrix. The results of sensorimotor embedding are compared to

the true disparities for the points of interest in the stereo pair. The disparity of two

corresponding points in a stereo pair is the absolute value of the difference of the

horizontal coordinates for the corresponding points. So for a pair of corresponding

points with horizontal coordinates xL and xR, the disparity is |xL−xR|. The ground

truth disparities are provided as part of the Middlebury Stereo Datasets [25].

7.2.3 Simulation

This experiment uses a simulated robot in Gazebo [32]. The robot moves along a

track and has two parallel cameras. In addition to supporting linear motion along the

track, the cameras support vergence. Both cameras rotate inward in a coordinated

fashion, and converge on a point of joint focus. Three meters in front of the robot

is a stop sign that serves as salient visual target for the robot. Saliency in this

environment is determined using the method of Itti and Koch. Figure 7.4 shows the

simulated robot. The simulation code is available online [68].

In the simulation, the vergence angle changes were restricted to increments

of 0.01 radians. The left and right cameras were both foveated, and the difference

between the left and right cameras was used to identify the proper vergence angles

using Equation 7.2. Like in real stereo images, the minimal image difference occurred

when both cameras focused on the salient object in the simulation.

In the simulated setup, the vergence angle required at any position along

the track can be computed directly using the law of sines. Figure 7.4 shows the

relationship between the vergence angle θ for the left camera and the distance to the

target Z. Since this agent uses symmetric vergence actions, the right camera would

also move by θ radians in the opposite direction. The baseline B is 0.5 meters. For

106

4m

ϴ
�

Visual Target
Left Camera

Right Camera

Track B

Z

Track Length

Figure 7.4: Simulated Gazebo Robot. The simulated robot in Gazebo. The

cameras are mounted on the left and right sides of the robot. The cameras can

rotate inward in a coordinated fashion to converge on a point of interest. A stop

sign serves as a salient visual target for the robot. The baseline B is 0.5 meters. The

distance to the object Z changes depending on the robot position along the track.

distance Z and baseline B, the law of sines gives us

sin(θ)

B
=

sin(ω)

Z
. (7.4)

Also, θ = pi
2 − ω, leading to the following formula for the distance Z,

B sin(π2 − ω)

sin(ω)
= Z. (7.5)

An agent applying sensorimotor embedding first learns a vergence policy. In

this experiment the policy was learned using Least Squares Policy Iteration (Section

2.2). The reward function provided reward when the difference between the left and

right cameras was minimized. The features for the policy were the activations of each

element in the foveated cameras. Action traces were collected at different distances

from the target object. The resulting action traces were compared by comparing

their relative lengths. The derivation of this comparison is the same as in Section

7.2.2. After applying multidimensional scaling to the distance matrix, the resulting

one dimensional points were associated with the start states of each action trace.

107

7.3 Results

7.3.1 Stereo Pairs

Using the Aloe image pair, the difference between the left and right fovea varies as

a function of position. In one example case the agent discovered a minimum fovea

difference at pixels 320 in the right image and 446 in the left image for a disparity

of 126 pixels. The ground truth disparity was 128 pixels. For other salient points

in this image pair, the estimated disparities were never more than 2 pixels from the

ground truth provided with the dataset.

Examining the minimum locations of the left and right foveas show that they

correspond to the same point of interest in both the left and right stereo images.

In this example, the agent had to deal with a local minimum along the vergence

trajectory due to an aloe leaf that appears in the left image but is occluded in the

right image. The fovea location for both these points of interest is shown in Figure

7.6. Despite this local minimum, the minimum fovea difference between the left

and right cameras achieved through convergence still results in an accurate disparity

measurement.

Since both cameras always began at the same distance from the target, the

length of each action trace depended only on the disparity of the target point. A

point with the larger disparity would be associated with the shorter action trace and

a point with a smaller disparity would be associated with a longer action trace.

For two action traces of different lengths, the difference in lengths was equal to

the difference in disparities. An action trace associated with a target point disparity

of 120 and an action trace with a target point disparity of 140 would differ by 20

actions. The distance between these traces would be 20. Using Procrustes analysis

to compare the learned depths after multidimensional scaling results in an error of

.0003. This indicates that the correspondence between learned depth and ground

truth is accurate after accounting for changes and scale and rotation.

108

0 100 200 300 400 500 600 700 800
Left Image Pixel Position.

0.10

0.15

0.20

0.25

0.30

0.35

N
o
rm

a
liz

e
d
 F

o
v
e
a
 D

if
fe

re
n
ce

Right Image Fixed at 320

Figure 7.5: Fovea Stereo Difference. The difference between the left and right

foveas changes as a function of convergence, with a minimum within 2% of the true

disparity. Fixing the right fovea on the target and moving the left fovea results in

the following plot of left and right foveal difference. Using this approach to compute

stereo distance highlights a potential source of aliasing. Note that the false minimum

corresponds to a point that is occluded in the left image but visible in right image.

The minimum difference between foveated cameras provides a perceptual goal for

the agent in this domain.

7.3.2 Simulation

Figure 7.9b shows the result of applying sensorimotor embedding to the vergence ac-

tion traces generated in simulation. Each trace consisted of a number of convergence

actions that rotate each camera by 0.01 radians. These were then compared to each

other using the same approach as in the previous section. Multidimensional scaling

was applied to the resulting distance matrix, yielding a set of values associated with

the depth of the target.

109

(a) Right Image (b) False Minimum (c) True Target

Figure 7.6: The agent has to deal with occlusions in stereo image pairs. A false

minimum and the true target are shown in the middle and right images respectively.

The left image shows view of the other camera. The agent can identify the shared

salient point of interest since it minimizes the difference between the left and right

foveated cameras.

The image difference in the simulated domain occurs at a point in vergence

space that matches the ground truth vergence required for binocular alignment (Fig-

ure 7.7). This indicates that image difference is an adequate source of information

for constructing a reward signal for learning a vergence policy. In this domain, with

only a single action, learning such a policy requires only standard methods. Figure

7.8 shows the result of applying least squares policy iteration in this domain. After

each policy iteration, the current policy was tested at different distances to see if

the agent would correctly converge on a point of interest. After nine iterations, the

agent was able to learn a perfect vergence policy.

The angle of vergence is inversely proportional to the distance to the cam-

eras. Since the convergence actions were limited to 0.01 radian increments, the true

vergence could only be approximated. For distant focal points, aliasing occurred

since the optimal vergence angle in the discrete set of achievable vergence angles was

identical for slightly different positions. The ground truth vergence angles are shown

110

0.5 0.4 0.3 0.2 0.1 0.0 0.1
Vergence Angle

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 I
m

a
g
e
 D

if
fe

re
n
ce

Simulated Vergence Image Difference

Figure 7.7: Simulated Image Difference. Image difference in the simulated do-

main as a function of vergence angle. The simulated domain does not have a false

minimum as was the case in the real stereo pairs example. The minimum difference

corresponds to the correct vergence angle for binocular alignment.

in Figure 7.9a. After sensorimotor embedding, the scale of the learned sensorimotor

features is different from the actual vergence angles, but the functional relationship

was similar (Figure 7.9). The Procrustes error between vergence angles and sen-

sorimotor features was 0.0257, with most of the error attributable to sensorimotor

aliasing. Sensorimotor embedding and vergence actions provide the agent a method

of generating features related to depth.

7.4 Discussion

Saliency maps play an important role in this chapter. A developing agent needs

identifiable perceptual goal states. In early development, the perceptual range of

an agent is limited, and so salient goals must be constructed out of simple features.

111

0 1 2 3 4 5 6 7 8 9
of LSPI Iterations

0

20

40

60

80

100

%
 o

f
T
ra

ils
 S

u
cc

e
ss

fu
l

Learning Vergence Policy

Figure 7.8: Learning a Vergence Policy. A vergence policy can be learned using

least squares policy iteration. This agent learns the task in nine iterations. Learning

a policy is the first step in sensorimotor embedding.

Saliency maps, which have been shown to predict gaze in adults, do so with surprising

accuracy using only simple "bottom up" features [30].

Though not central to this thesis, it is worth considering whether sensorimotor

embedding would serve as a computational theory of the acquisition of stereo cues

in humans. The motor system that controls eye movements is more complicated

than the simple action space presented in this chapter, as is the interaction between

version and vergence motions.

Sensorimotor embedding analyzes the sequence of motor actions that result in

proper vergence instead of using angle measurements directly. For a developmental

system, angles would not be available to the agent. Biological systems, like the

human eye, have more complicated action space. In humans, the eye is controlled

by six extra-ocular muscles (Figure 7.10). The movement subspace corresponding

112

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Track Position (Meters)

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

V
e
rg

e
n
ce

 A
n
g
le

 (
R

a
d
ia

n
s)

Vergence Angles by Track Position

(a) Ground Truth

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Track Position (Meters)

10

8

6

4

2

0

2

4

6

S
e
n
so

ri
m

o
to

r
S
p
a
ce

Sensorimotor Embedding

(b) Sensorimotor Embedding

Figure 7.9: Sensorimotor Embedding Features in Simulation. The angle of

vergence required is inversely proportional to the distance of the object. For these

experiments, the vergence was limited to 0.01 radian increments. For distant focal

points, this results in aliasing, since the optimal vergence angle in the discrete set

is identical for slightly different distances. The ground truth vergence, calculated

using Equation 7.5 angles for the same track positions are shown on the left. Except

for a scale change, the functional relationship between position and the sensorimotor

features is similar to the ground truth, indicating that sensorimotor embedding is

learning an important feature for depth. The Procrustes error is 0.0257 when com-

paring points in vergence space to points in sensorimotor space with the same track

position.

113

Figure 7.10: Eye Musculature. This graphic shows the mapping between six

extraocular muscles and three cranial nerves that control eye movements. Unlike

the simple action spaces used in the experiments presented in this chapter, the

human ocular muscle system is more complex, with six muscle groups working in a

coordinated fashion to perform a variety of visual actions.

to vergence involves the coordinated movement of a set of muscles. In this case the

internally available action trace for sensorimotor embedding would be the specific

nerve stimuli corresponding to the vergence actions. As long as these nerve impulses

can be compared in a reasonable way, sensorimotor embedding can be applied.

Whether or not sensorimotor embedding is a viable computational theory of

learning depth in humans, the experiments in this chapter show that sensorimotor

embedding can be applied by robots to learn depth features.

114

7.5 Conclusion

An agent can learn about depth using sensorimotor embedding. Applying sensorimo-

tor embedding requires learning a vergence policy, applying that policy to generate

action traces, then applying multidimensional scaling to those action traces. Though

the policies and action traces are simple compared to previous experiments, senso-

rimotor embedding can be applied unmodified to learn yet another useful geometric

feature. The next chapter will demonstrate how an agent can learn control policies

based on these depth features.

115

Chapter 8

Visual Mountain Car

The goal in the mountain car is to drive an under-powered car out of a valley in the

shortest amount of time. The problem is easily stated, but complex enough that it

has become a classic test for reinforcement learning algorithms. The state of the car

(position, velocity) in a typical mountain car problem is provided to a reinforcement

learning agent. In the visual mountain car problem, the agent is not provided

with position or velocity, but must instead identify the relevant state through

visual inspection of the surrounding environment. Like an isolated lander in peril,

or an independently developing agent, the acquisition of positional knowledge must

be autonomous.

8.1 Motivation

In this experiment, a developmental program learns sensorimotor features that stand

in for the position and velocity of the mountain car. The agent uses that information

to solve the problem using reinforcement learning. Unlike Procrustes analysis on

learned geometry presented in previous experiments, learning useful sensorimotor

features demonstrates that the geometric concept learned by the agent is useful in

116

solving a complex control task. For visual mountain car, the learned features are a

functional proxy for position and velocity. Note that the goal of the agent is not to

learn true positions or velocities, since learning those would require reference to an

external fixed scale. For many autonomous applications, the way a robot represents

these features internally need only be sufficient to allow the robot to learn or relearn

required skills.

The developmental program described here can run on multiple different mor-

phologies without changing the parameters or content of the program. Only the

robot’s own perceptual experience changes from experiment to experiment. Inte-

grating sensorimotor embedding with developmental programming to solve a rein-

forcement learning task on multiple different robot morphologies demonstrates the

robust nature of this approach. It is the only truly calibration-free methods of ex-

tracting geometric features for solving control tasks.

8.2 Setup

The visual mountain car is implemented as a simulated robot in Gazebo [32]. The

robot moves along a track and has two parallel cameras. In addition to supporting

linear motion along the track, the cameras support vergence: Both cameras can

rotate inward in a coordinated fashion, and converge on a point of joint fixation.

Three meters in front of the robot is a stop sign that serves as salient visual target

for the robot. Our approach to saliency in this environment is that of Itti and Koch

[30]. A diagram of the simulation is included in Figure 7.4.

The learning process is divided into stages. Prior to learning depth cues, the

robot can learn the structure of the cameras as in Chapter 4. During the next stage

the agent learns to represent position by learning a vergence policy and then apply-

ing the policy at different positions along the track. The resulting action traces are

compared using the methods described in Section 3.1. After applying multidimen-

117

sional scaling to the action trace distance matrix, action traces (and corresponding

start states) are associated with a one dimensional set of points. These points are

the features that allow the agent to represent position. After this stage of learning

the agent associates with each stereo image start state with a single one-dimensional

number. This number is a proxy for position. Chapter 7 describes this stage in

detail.

The agent models velocity by tracking the change in its own internal represen-

tation over time [70]. Position and velocity are used as the input to the reinforcement

learning agent tasked with solving the mountain car task.

The mountain car dynamics are inspired by the problem of driving an under-

powered car out of a valley. Because the car is under-powered, moving only forward

will not succeed. Any policy that works needs to oscillate between moving forward

and backward to build up enough momentum to reach the goal. The position and

velocities are updated in mountain car according to

vt+1 = vt + ap+A cos(ωxt + φ) (8.1)

xt+1 = xt + vt+1. (8.2)

In this equation, a ∈ {−1, 0, 1} is the action corresponding to {forward, neutral, reverse}.

The variables p, ω, φ, and A control the power of the car and force of gravity in the

simulation. In these experiments these were set to

p = 0.001 (8.3)

ω = π
4 (8.4)

φ = π
2 (8.5)

A = 0.0025. (8.6)

118

The parameters ω, φ, and A are the angular frequency, phase, and amplitude

for the cosine function. The position of the robot is limited to the track, so x ∈

(−2, 2). The velocity is also limited to (−0.07, 0.07). The robot completes the task

if it can reach the goal state, defined in this task to be x > 1.9. This task is shown

in Figure 8.1

Goal

Figure 8.1: Mountain Car Domain. The mountain car domain is a classic problem

in reinforcement learning. In this problem, an underpowered car has to escape from

a valley. The car dynamics are shown in Equations 8.1 and 8.2. Sensorimotor

embedding is used to find policies for a variant of the mountain car problem where

the agent receives visual input and must deduce position and velocity.

After learning features that model position and velocity, the agent learns to

solve the corresponding mountain car using as input these internal features. The

policy is learned using Sarsa with CMAC function approximation [41]. The learning

rate is set to 0.3 with gamma and lambda parameters set to .99 and .9 respectively.

The CMAC has two levels with a resolution of 0.1. The CMAC implementation is

available online [67].

The complete developmental program that learns position in the visual moun-

tain car simulator has several steps. The first two steps are covered in previous

119

chapters on learning sensor geometry and depth:

1. Learn the geometry of the cameras (Chapter 4).

2. Learn a vergence policy using the cameras and apply sensorimotor embedding

to vergence action traces to estimate position (Chapter 7).

3. Solve the mountain car policy using learned sensorimotor features.

This entire developmental program is then run without any changes on

two alternative robot morphologies, a robot with a longer baseline between cameras

(1.4m instead of 1m) and a robot with vertically oriented cameras (Figure 8.3).

The only difference between these experiments is the perceptual experience of the

robot. The learning process and parameters are identical across all the morphologies.

This approach performs well on these different platforms, and demonstrates that

sensorimotor embedding provides a robust method of learning geometry even when

the underlying robot geometry changes.

8.3 Results

Unlike previous experiments, the agent is not evaluated on how well it learns position,

but instead on how well the learned sensorimotor features perform as a basis for

learning the mountain car task. To evaluate the learning agent, the learning process

is halted every 10,000 training steps and the current best policy for the agent is used

to solve the mountain car problem at 100 randomly selected states. The average

number of steps to reach the goal is used as the performance metric. This evaluation

is repeated 10 times to produce Figures 8.2 and 8.4. A random agent is also evaluated

in order to provide a benchmark for the increase in performance due to learning. An

agent trained directly using position and velocity is also presented, and provides an

example of the ideal learning performance in this task. The results of this evaluation

are shown in Figure 8.2.

120

0 2 4 6 8 10
of Training Steps (x10000)

0

100

200

300

400

500

600

700

800

A
v
g
.

N
u
m

b
e
r

o
f

S
te

p
s

to
 R

e
a
ch

 G
o
a
l

Mountain Car Performance

Sensorimotor Embedding
Position,Velocity
Random Agent

Figure 8.2: Sensorimotor Features for Mountain Car. The average number

of steps required to reach the goal state is plotted as a function of the number of

training steps for a random agent, an agent using sensorimotor features, and an

agent using traditional position and velocity. The agent using sensorimotor features

learns slower than an agent that has access to the position and velocity, but over

longer training periods the performance is comparable.

The agent that uses sensorimotor embedding is worse than an agent with

access to the true position in velocity in two ways. First, the agent performance

at each interval is more variable. Second, these agents, on average, require more

training to achieve a comparable level of performance with the ideal agent. Both

of these issues result from the aliasing introduced by the sensorimotor embedding

process described in Chapter 7. Since vergence actions are discrete movements, the

actual degree of vergence captured by sensorimotor embedding is a discrete value

of limited resolution. This aliasing of nearby positions becomes more pronounced

further from the target. The accuracy of vergence as a feature is also known to decline

with distance in humans, and is widely seen as a reason that depth perception in

humans involves many additional monocular image features.

121

Figure 8.3: Alternate Robot Morphologies. The same learning process can be

run on a robot with a different morphology. Here the cameras are mounted vertically

on the track instead of horizontally. The developmental program runs on this agent

without any changes, demonstrating that sensorimotor embedding generalizes to

different robot shapes.

Despite the aliasing, the learning agent is able to learn a policy for solving

the mountain car task using only the sensorimotor embedding features. Since the

sensorimotor embedding approach runs a developmental program to achieve this

result, the program can easily be rerun on robots with different morphologies to

achieve the same result. In Figure 8.4, the performance of this developmental pro-

gram is evaluated on a robot with a wider baseline between cameras and on a robot

where the cameras are vertically aligned instead of horizontally aligned (Figure 8.3).

Performance is the same across all morphologies, demonstrating that sensorimotor

embedding generalizes to different robot shapes.

122

0 2 4 6 8 10
of Training Steps (x10000)

100

200

300

400

500

600

700

A
v
g
.

N
u
m

b
e
r

o
f

S
te

p
s

to
 R

e
a
ch

 G
o
a
l

Mountain Car Performance

1m Base
1.4m Base
Vertical

Figure 8.4: Alternate Robot Performance. The average number of steps re-

quired to reach the goal state is shown as a function of the number of training steps

for three different robot morphologies, the standard robot, a robot with a wider

baseline, and a robot with vertical cameras. The performance differences are not

statistically significant, and the results indicate that sensorimotor embedding gener-

alizes to different robot shapes.

123

8.4 Discussion

The increase in baseline is meant to evoke the idea of a robot that can physically

grow in size. The change in orientation of the cameras themselves is a more drastic

change which shows the versatility of this approach on a wide variety of possible

robot configurations. As mentioned in Chapter 1, a key motivation for this work is

in applications where autonomous robots are far from any lab environment, and may

need to learn or re-learn basic skills. In the case of a change in morphology, how

does an agent know to relearn these basic features and skills? For an autonomous

lander, the detection of an anomalous event can be made by remote operators, and

rerunning the developmental program can be triggered remotely.

In the case of a robot without that kind of human guidance, relearning could

be triggered using the same reinforcement signal used in sensorimotor embedding.

As the morphology changes, the performance of existing learned policies will change,

leading naturally to retraining of the underlying policies. The agent has only to

detect this change in performance, and rerun the batch component of sensorimotor

embedding. A version of this approach is presented in Chapter 4, where the agent

must relearn geometry after a lesioning event. In this case, the task is better de-

scribed as punctuated, instead of non-stationary, as the change being modeled is

sudden and the optimal policies on both sides of the change do not change. It re-

mains an open question how best to integrate the batch components of sensorimotor

embedding for non-stationary tasks that change gradually over time, such as would

be the case for a robot whose morphology is slowly changing with age and wear.

8.5 Conclusion

As the results in this chapter show, useful geometric features can be learned using

sensorimotor embedding. Agents that learn these features can use these features

124

to solve control problems. The same developmental program that learns geometric

features and uses those features to learn a control policy can be run unchanged on

a variety of robot morphologies.

125

Chapter 9

Discussion and Future Work

“Either this is madness or it is Hell.” “It is neither,” calmly replied

the voice of the Sphere, “it is Knowledge; it is Three Dimensions: open

your eye once again and try to look steadily.” –Edwin Abbott Abbott,

Flatland: A Romance of Many Dimensions

This chapter discusses the results of the dissertation in aggregate. New av-

enues for future research are presented along with potential improvements to the

existing algorithm and applications. They include extending sensorimotor embed-

ding to handle probabilistic transition functions and policies, discovering depth and

other visual features using human eye models, applying sensorimotor embedding to

the problem of option discovery, and learning how to communicate sensorimotor

features.

9.1 Perceptual Goals and Development

The results presented in this thesis depend on having achievable perceptual goals in

each domain that are not too difficult for an agent to achieve during early sensori-

motor development. In human development, reflex actions reduce the complexity of

126

the policy search space. The analogue to reflex actions in developmental robotics are

simple routines that augment and organize raw early motor experience. In artificial

developmental systems, both the perceptual goals and the simple actions have to be

specified in advance. The relationship between perceptual goals, reflex actions, and

high level skills is murky, especially in the case of human development. A general

guideline for building developmental programs is to separate the hard problem of

development into stages of simpler problems.

With development it is possible to adapt autonomously to changes as was

demonstrated in this dissertation. In Chapter 1, the plight of the Rosetta space

probe was discussed. The probe’s lander bounced several times before coming to

rest at an unknown location on the asteroid’s surface, cutting that portion of the

mission short due to a related power failure. Consider what an autonomous probe

could achieve if it had the ability to adapt in that distant environment. It would

adapt to damage, relearn basic skills, reacquire relevant geometric features, and

reorient itself so as to power its solar cells and continue its mission. Sensorimotor

embedding provides one component of a developmental program that would be able

to adapt autonomously millions of miles away.

9.2 Cognitive Models of Geometry

Sensorimotor embedding is a general method of acquiring geometric knowledge. An

important question for future work is whether sensorimotor embedding would also

serve as a model of human development. There is evidence from developmental

psychology to support the idea that perceptual goal states exists in a variety of

situations that a developing infant experiences. For example, the view bias figures

presented in Section 3.3 show that view bias increases with age (Figure 3.3). When

applying sensorimotor embedding to the object pose problem in Chapter 6, the agent

demonstrates a similar evolution in view bias while learning a policy to learn the

127

(a) Early Training View Bias (b) Late Training View Bias

Figure 9.1: View Bias Changes During Training. An agent running sensori-

motor embedding acquires a pronounced view bias as the policy for acquiring the

perceptual goal state improves. The left image shows the initial distribution over

object views. The right image shows the distribution over object views at the end of

training the policy. This change in view bias is also observed in developing infants

(see Section 3.3).

perceptual goal in that domain (Figure 9.1).

For sensorimotor embedding to be a viable model for cognitive science, it

would have to provide a testable hypothesis. There is research that shows that

early perceptual experience impacts the development of perceptual skills [6] and

research that shows that early motor experience impacts later motor skill acquisi-

tion [53]. Does early motor experience impact perceptual development? Bushnell

and Boudreau proposed a connection between motor development and changes in

perceptual skills, particularly the impact of motor development on the timing of

developmental changes. Sensorimotor embedding, as a concrete algorithmic theory

for learning geometry, depends on learning motor skills in order to acquire percep-

tual knowledge, and so is a concrete realization of this idea. Finding a way to test

whether sensorimotor embedding works as a theory of cognition is another potential

128

area of future work.

9.3 Human Models of Eye Motion

Chapter 7 presented results for an agent learning depth features from vergence

actions using sensorimotor embedding. The model of vergence presented in that

chapter does not capture the complexity of human eye movements. For humans,

a combined movement of the two eyes in the same direction is known as a version

movement and the eyes can move together laterally, vertically, or in an oblique di-

rection. A movement of both eyes in opposite directions is a vergence movement. In

horizontal vergence, the visual axes move within a plane containing the interocular

axis. The motion that brings images of objects at a particular distance into clear

focus is known as accommodation.

One key feature of the human visual system is that multiple different actions

tend to occur simultaneously in a coordinated fashion. For example, horizontal

vergence and accommodation normally occur together. These two responses are

accompanied by an appropriate change in pupil diameter. The three concomitant

changes are known as the near-triad response [27]. These complexities, combined

with properties that govern version and vergence interaction such as Hering’s Law

of Equal Innervation, present a unique challenge for sensorimotor embedding.

Separating the actions that are relevant for specific geometric features from

a set of simultaneous actions is a challenge for sensorimotor embedding with human

visual motion models. For example, version actions may be relevant for ego-centric

coordinates, while vergence actions provide depth cues. Accommodation and pupil

dilation, however important for clarity of vision, do not contribute to either of these

geometric features. Stepping back, it seems clear that human vision plays an im-

portant role in human knowledge of geometry. The sensorimotor hypothesis is that

the actions the visual system performs to bring objects into binocular focus are a

129

key source of geometric information. Developing sensorimotor embedding to a point

where this hypothesis can be rigorously explored is an important avenue of future

work.

9.4 Probabilistic Sensorimotor Embedding

In sensorimotor embedding discussed in Chapter 3, both the transition function and

policy were deterministic functions. However, in general Markov Decision Problems

discussed in Chapter 2, the transition functions and policies are probabilistic func-

tions. A transition function T : S×A×S → [0, 1] defines a distribution over possible

transitions from state-action pairs to successor states. Agents should also be able to

adopt a random policy, π : S×A → [0, 1], that defines a distribution over actions, of

which one is sampled when running the policy. Stochastic policies have been shown

to perform better than deterministic policies in certain cases [40].

Sensorimotor embedding compares action traces generated by following poli-

cies. Random transitions or random policies can generate multiple distinct action

traces from the same starting position. To account for the multiplicity of traces,

sensorimotor embedding needs to be extended to handle comparing action traces

drawn from a distribution. There are two possible approaches:

1. An agent samples multiple action traces with the same start state then uses

the mode of the sample as the canonical action trace for comparison.

2. For each pair of start states, the agent samples action traces for both start

states, and tracks the average distance computed over multiple samples.

In situations where transitions are stochastic but the policies are ballistic,

such as the pan/tilt camera experiment discussed in Chapter 4, a sampling approach

is not needed, since the action trace produced by the policy has length one, and

the policy itself is deterministic. For the tasks presented in this dissertation, the

130

policy for achieving perceptual goal states, if optimal, should tightly control any

randomness inherent in the transition function for the domain, and should reduce

the need to sample many action traces in order to generate accurate action trace

distance estimates.

Probabilistic sensorimotor embedding will allow agents to acquire geometric

features in uncertain domains or when using stochastic policies, and will expand

the applications of sensorimotor embedding beyond the domains presented in this

dissertation.

9.5 Variations of Sensorimotor Embedding

Sensorimotor embedding depends on learning a policy, comparing action traces, and

finding a low-dimensional representation with the same distance relationships as the

action traces. Variations on sensorimotor embedding could explore alternatives for

each of these components. For example, multidimensional scaling is used to find low-

dimensional coordinates. This algorithm could be replaced by a non-linear manifold

learning method. Action traces are compared using the metric described in Chapter

3, but other methods of comparing action traces are also possible. Dynamic time

warping might be a useful method of comparing action traces with continuous action

parameters and varying sample times. Since dynamic time warping is not a metric,

the formal properties of sensorimotor embedding would need to be relaxed [43].

Another variation worth exploring is incorporating state information in the

later stages of sensorimotor embedding. State information is used by the policy

to generate action traces, and the current approach extracts geometric features only

from the action traces. Though action traces contain a significant amount of implicit

information about geometry, being able to incorporate state traces as well may result

in improved accuracy and help to disambiguate aliased action traces, e.g. the aliased

vergence traces in Chapter 7.

131

9.6 Visualization and Option Discovery

Manifold learning methods are commonly used to visualize complex data [34]. Senso-

rimotor embedding, as a manifold learning method, can be used to visualize policies.

As an example, a simple agent was trained on the mountain car task (Figure 8.1).

After training, the agent started at random positions and velocities and the resulting

action traces were recorded. Applying the sensorimotor embedding to these action

traces results in three distinct clusters (Figure 9.2). Inspecting the clusters reveals

that sensorimotor embedding divides the action traces into three categories; traces

that result from failure to complete the task, traces that result from opportunistic

starting positions, and traces that rock the car back and forth to escape the valley.

In addition to visualization, sensorimotor embedding can be used to discover

useful options. Options are complex actions or subroutines agents can run that

simplify the search for good policies. Given a set of action traces generated using a

trained policy, a set of options can be discovered by first dividing the action traces

into small fixed length action sequences. These sequences can be compared using

sensorimotor embedding. Clustering the resulting low-dimensional representation of

the trace segments and taking the pre-image of each cluster mode generates a set of

candidate options for inclusion in the agent action set. These sequences of actions

are options that simplify learning a policy.

This approach was applied in the mountain car task (Figure 8.1). Traces

were divided into action sequences of length five. After clustering, sequences corre-

sponding to the mode of each cluster were included as options for training a new

agent on the same task. Figure 9.3 shows the learning performance over time for an

agent using random options, options discovered through sensorimotor embedding,

and no options. The agent with options discovered using sensorimotor embedding

learned the task faster than the agent with no options. Providing a set of randomly

generated options disrupted the learning process of the agent in this domain.

132

Quick Escape

Failure

Oscillating
Sequences

Figure 9.2: Policy Visualization Example. Sensorimotor embedding can be ap-

plied to action traces for the purpose of visualization. Here an agent was trained

to solve the mountain car problem using Sarsa(λ) as described in Chapter 2. After

training, traces were recorded for 1000 starting random starting points in the task.

The low dimensional representation of the traces was generated using sensorimotor

embedding. The clusters represent failed traces, opportunistic starting locations,

and traces that involve rocking back and forth to escape the valley. This exam-

ple shows how sensorimotor embedding may be useful for visually inspecting how

policies behave.

As these examples demonstrate, sensorimotor embedding for visualization

and option discovery is a promising direction for future work.

9.7 Communicating Geometric Knowledge

This dissertation demonstrates how an agent can use geometric knowledge to solve

a task. Autonomous agents working together need to share geometric knowledge

about the environment. Being able to communicate about geometric features of the

133

local environment would also be useful for cases like Rosetta’s lost lander, where a

description of the local landscape with ground control would have helped diagnose

the probe’s situation. One essential element of communication is discovering shared

reference distances. Though individual agents can learn grounded geometric features

of the environment using sensorimotor embedding, this knowledge is tied to each

agent’s individual policies and actions. Finding a method for multi-agent systems to

discover how to communicate about learned geometric features is another promising

direction for future work.

9.8 Conclusion

Several directions for future work were discussed, including using realistic models

of eye motion, extending sensorimotor embedding to stochastic domains, and using

sensorimotor embedding for visualization and option discovery. The next chapter

summarizes the contributions in this dissertation, and concludes.

134

0 20 40 60 80 100
episodes

0

200

400

600

800

1000
a
v
g
.

#
 o

f
st

e
p
s

Mountain Car Options

w/ options
w/ random options
no options

Figure 9.3: Option Discovery with Sensorimotor Embedding. Sensorimotor

embedding can be used to learn useful options. In this experiment an agent was

trained to solve the mountain car task (Figure 8.1). After training, action traces were

recorded at random starting positions. Subsequences of length five were extracted

from these traces. Sensorimotor embedding was applied to these trace segments and

the resulting low-dimensional points were clustered. The pre-image of the cluster

modes were used as options for training a new agent. To compare, agents were

trained with no options and with the same number of randomly generated options.

The agent with options generated using sensorimotor embedding learned the task

faster than the other agents. This shows that sensorimotor embedding can be used

for option discovery.

135

Chapter 10

Conclusions

I’m beginning to feel at home with these prisms. Reaching is accurate for

at least the most familiar and practical tasks, say reaching for particular

door handles. –Hubert Dolezal Living in a World Transformed

This thesis focuses on the discovery of geometric knowledge. By developing

knowledge of geometry over time using sensorimotor embedding, agents do not have

to depend on knowledge encoded in the agent’s programming, and can adapt to

unexpected changes. This method eschews complex calibration schemes and adopts

an approach that leverages the embodied experience of a developing agent. In key

scenarios encountered by a developing agent, this approach performs better than

principal component analysis and other methods of dimensionality reduction, and is

general enough to run on robots with different morphologies with no configuration.

This final chapter reviews the contributions of this thesis.

10.1 Contributions

The main technical contribution, sensorimotor embedding, was described in detail in

Chapter 3. Sensorimotor embedding is a developmental approach to learning about

136

geometry. The approach involves first learning a policy for achieving a perceptual

goal state, comparing the resulting action traces, and generating a low-dimensional

representation of the associated start states by applying multidimensional scaling to

the action trace distances. Sequences of actions encode information about geomet-

ric features of the environment, and sensorimotor embedding provides a principled

method of extracting that information and making it available to the developing

agent. Chapter 3 also discusses how to best evaluate sensorimotor embedding and

other manifold-learning methods and suggests that Procrustes analysis is a useful

tool.

The main experimental chapters demonstrate how sensorimotor embedding

can be used to learn geometric features in different domains. Four important domains

were studied. In each case the agent was able to learn geometric features from

experience in a robust and general way without the need for manual calibration.

Chapter 4 shows how sensorimotor embedding can be applied to learn the geometry

of a foveated sensor. The learning process was shown to adapt to sensor changes

including sensor lesions and image inversion, both changes that would cripple most

robots. Chapter 5 applies sensorimotor embedding to learn positions of states in

gridworlds and the position of a roving-eye robot. Chapter 6 uses sensorimotor

embedding to learn the pose of an object. Chapter 7 learns the features for depth

using vergence policies. Each of these domains contains useful geometric knowledge

that sensorimotor embedding is able to discover. Sensorimotor embedding works in

dramatically different domains, demonstrating that sensorimotor embedding can be

applied successfully in a wide variety of different situations.

Chapter 8 shows how these geometric features can be brought together and

used as inputs for a higher level learning process. In this chapter an agent solves the

Visual Mountain Car task, a variation of a popular control problem where the agent

is not provided with state information, but must instead infer that information from

137

visual experience. To solve this task the agent first learns to estimate its position

on the track using sensorimotor embedding. Using this inferred position, the agent

is able to solve the task using reinforcement learning. The robust nature of senso-

rimotor embedding is also tested by running the same developmental program on

robots with different morphologies. These experiments demonstrate that sensorimo-

tor embedding can serve as a foundation for adapting to a changing world, and for

high-level learning.

10.2 Conclusion

This dissertation demonstrates many applications of sensorimotor embedding. In

each case a developing agent was able to learn geometric features of the environ-

ment. That knowledge was tested against ground truth using Procrustes analysis,

used as a feature for solving a control problem, tested through lesion and inversion

experiments, and tested on robots with different morphologies. Agents can learn

about the geometry of sensors, about the geometry of the local environment, and

about the pose and depth of objects. The algorithmic ideas presented in this dis-

sertation provide an answer for how agents can come to know, understand, and use

geometric knowledge in a robust and general way.

138

Bibliography

[1] Kirsti Andersen. The Geometry of an Art: The History of the Mathematical

Theory of Perspective from Alberti to Monge. Sources and Studies in the History

of Mathematics and Physical Sciences. Springer, London, 2007.

[2] Emily Baldwin. Did philae graze a crater rim during its first

bound? http://blogs.esa.int/rosetta/2014/11/28/did-philae-graze-a-crater-

rim-during-its-first-bounce/, 2014.

[3] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When

is “nearest neighbor” meaningful? In International Conference on Database

Theory, pages 217–235. Springer, 1999.

[4] Chistopher Bishop. Pattern Recognition and Machine Learning. Springer, New

York, 2006.

[5] Pratik Biswas, Tzu-Chen Liang, Kim-Chuan Toh, Yinyu Ye, and Ta-Chung

Wang. Semidefinite programming approaches for sensor network localization

with noisy distance measurements. IEEE Transactions on Automation Science

and Engineering, 3(4):360–371, 2006.

[6] Colin Blakemore and Grahame Cooper. Development of the brain depends on

the visual environment. 1970.

139

[7] Byron Boots, Arunkumar Byravan, and Dieter Fox. Learning predictive models

of a depth camera & manipulator from raw execution traces. In IEEE Interna-

tional Conference on Robotics and Automation, pages 4021–4028. IEEE, 2014.

[8] B. Borchers. CSDP: A C library for semidefinite programming. Optimization

Methods and Software, 11(1):613–623, 1999.

[9] M. Bowling, D. Wilkinson, A. Ghodsi, and A. Milstein. Subjective localization

with action respecting embedding. Robotics Research, 28:190–202, 2007.

[10] Michael Bowling, Ali Ghodsi, and Dana Wilkinson. Action respecting embed-

ding. In Proceedings of the 22nd International Conference on Machine Learning,

pages 65–72, New York, 2005. ACM.

[11] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,

volume 33. American Mathematical Society Providence, 2001.

[12] Andrea Censi. Bootstrapping vehicles: a formal approach to unsupervised senso-

rimotor learning based on invariance. PhD thesis, California Institute of Tech-

nology, 2013.

[13] Y Choe and N H Smith. Motion-Based Autonomous Grounding: Inferring Ex-

ternal World Properties from Encoded Internal Sensory States Alone. Proceed-

ings of the National Conference on Artificial Intelligence (AAAI-2006), 2006.

[14] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. CRC Press,

2001.

[15] Hubert Dolezal. Living in a World Transformed: Perceptual and Perfomatory

Adaptation to Visual Distortion. Academic Press, 1982.

[16] Ian L Dryden and Kanti V. Mardia. Statistical Shape Analysis. Wiley, New

York, 1998.

140

[17] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

[18] Bernd Fritzke. A growing neural gas network learns topologies. Advances in

Neural Information Processing Systems, pages 625–632, 1995.

[19] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov.

Neighbourhood components analysis. Advances in Neural Information Process-

ing Systems, 17:513–520, 2005.

[20] E Goldstein. Sensation and perception. Cengage Learning, 2013.

[21] Stephen Gould, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp, Marius

Messner, Gary R Bradski, Paul Baumstarck, Sukwon Chung, and Andrew Y Ng.

Peripheral-foveal vision for real-time object recognition and tracking in video.

In Proceedings of the International Joint Conference on Artificial Intelligence,

volume 7, pages 2115–2121, 2007.

[22] John C Gower and Garmt B Dijksterhuis. Procrustes problems, volume 3. Ox-

ford University Press Oxford, 2004.

[23] K.L. Harman, G. Keith Humphrey, and M.A. Goodale. Active manual control

of object views facilitates visual recognition. Current Biology, 9(22):1315–1318,

1999.

[24] Justin Wildrick Hart and Brian Scassellati. Mirror perspective-taking with a

humanoid robot. In AAAI, 2012.

[25] Heiko Hirschmuller and Daniel Scharstein. Evaluation of cost functions for stereo

matching. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2007.

141

[26] Radu Horaud, Fadi Dornaika, and Bernard Espiau. Visually guided object

grasping. IEEE Transactions on Robotics and Automation, 14(4):525–532, 1998.

[27] Ian P Howard. Binocular vision and stereopsis. Oxford University Press, 1995.

[28] Yoshito Ikemata, Akihito Sano, Kiyoshi Yasuhara, and Hideo Fujimoto. Dy-

namic effects of arc feet on the leg motion of passive walker. In IEEE Interna-

tional Conference on Robotics and Automation, pages 2755–2760, 2009.

[29] L. Itti and C. Koch. Computational modelling of visual attention. Nature

Reviews Neuroscience, 2(3):194–203, 2001.

[30] L. Itti, C. Koch, and E. Niebur. A model of saliency-based fast visual attention

for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(11):1254–1259, November 1998.

[31] K.H. James, G.K. Humphrey, and M.A. Goodale. Manipulating and recogniz-

ing virtual objects: Where the action is. Canadian Journal of Experimental

Psychology, 55:111–120, 2001.

[32] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

open-source multi-robot simulator. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2149–2154, Sendai, Japan, Sep 2004.

[33] T. Kohonen. Self-Organizing Maps. Springer, 2004.

[34] W.J. Krzanowski. Principles of Multivariate Analysis: A User’s Perspective.

Oxford University Press, 2000.

[35] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of

Machine Learning Research, 4:1107–1149, 2003.

142

[36] Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net

model for visual area V2. Advances in neural information processing systems,

20:873–880, 2008.

[37] Fan Lu, Sündüz Keleş, Stephen J Wright, and Grace Wahba. Framework for

kernel regularization with application to protein clustering. Proceedings of the

National Academy of Sciences of the United States of America, 102(35):12332–

12337, 2005.

[38] S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian frame-

work for learning representation and control in markov decision processes. The

Journal of Machine Learning Research, 8:2169–2231, 2007.

[39] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-

ume 2, pages 416–423, July 2001.

[40] T Michael and I Jordan. Reinforcement learning algorithm for partially observ-

able markov decision problems. Proceedings of the Advances in Neural Infor-

mation Processing Systems, pages 345–352, 1995.

[41] W. Thomas Miller and Filson H. Glanz. The university of new hampshire

implementation of the cerebellar model arithmetic computer. 1996.

[42] J. Modayil. Discovering sensor space: Constructing spatial embeddings that

explain sensor correlations. In International Conference on Development and

Learning, 2010.

[43] M. Müller. Information Retrieval for Music and Motion. Springer, 2007.

[44] Gonzalo Navarro. A guided tour to approximate string matching. ACM Com-

puting Surveys, 33(1):31–88, 2001.

143

[45] L. Olsson, C. Nehaniv, and D. Polani. From unknown sensors and actuators to

actions grounded in sensorimotor perceptions. Connection Science, 18(2):121–

144, 2006.

[46] J K O’Regan and A Noë. A sensorimotor account of vision and visual con-

sciousness. Behavioral and Brain Sciences, 24(5):939–972, 2001.

[47] M. Pagel, E. Maël, and C. von der Malsburg. Self Calibration of the Fixation

Movement of a Stereo Camera Head. Autonomous Robots, 5(3):355–367, 1998.

[48] S.E. Palmer. Vision Science: Photons to Phenomenology. MIT Press, Cam-

bridge, MA., 1999.

[49] A. F. Pereira, K. H. James, S. S. Jones, and L. B. Smith. The origins of

human visual object recognition: Early biases and developmental changes in

self-generated object views. Journal of Vision, 2010.

[50] D. Philipona, J. K. O’Regan, and J. P. Nadal. Is There Something Out

There? Inferring Space from Sensorimotor Dependencies. Neural Computation,

15(9):2029–2049, 2003.

[51] D. Philipona and J.K. O’Regan. The sensorimotor approach in CoSy: The

example of dimensionality reduction. Cognitive Systems, pages 95–130, 2010.

[52] J. Piaget, B. Inhelder, and B. Inhelder. The psychology of the child. Basic

Books, 2000.

[53] Jan P Piek, Lisa Dawson, Leigh M Smith, and Natalie Gasson. The role of early

fine and gross motor development on later motor and cognitive ability. Human

movement science, 27(5):668–681, 2008.

[54] D. Pierce and B. Kuipers. Map learning with uninterpreted sensors and effectors.

Artificial Intelligence, 92(1-2):169–227, 1997.

144

[55] R. P. N. Rao and D. H. Ballard. Learning saccadic eye movements using multi-

scale spatial filters. Advances in Neural Information Processing Systems, 7:893–

900, 1995.

[56] Silvio Savarese and Fei-Fei Li. 3d generic object categorization, localization and

pose estimation. In ICCV, pages 1–8, 2007.

[57] Peter H Schönemann. A generalized solution of the orthogonal procrustes prob-

lem. Psychometrika, 31(1):1–10, 1966.

[58] JM Schott and MN Rossor. The grasp and other primitive reflexes. Journal of

Neurology, Neurosurgery & Psychiatry, 74(5):558, 2003.

[59] K B Shimoga and A A Goldenberg. Soft materials for robotic fingers. In

Proceedings of the IEEE International Conference on Robotics and Automation,

1992.

[60] Satinder Singh, Michael R James, and Matthew R Rudary. Predictive state

representations: A new theory for modeling dynamical systems. In Proceedings

of the 20th conference on Uncertainty in artificial intelligence, pages 512–519.

AUAI Press, 2004.

[61] A. Slater. Perceptual Development: Visual, Auditory and Speech Perception in

Infancy. Psychology Press, 1999.

[62] William D Smart. Explicit manifold representations for value-function approx-

imation in reinforcement learning. In AMAI, 2004.

[63] Dana Spiegel. The development of geometric knowledge.

http://alumni.media.mit.edu/ spiegel/papers/, 1998.

145

[64] Nathan Sprague. Basis iteration for reward based dimensionality reduction. In

IEEE 6th International Conference on Development and Learning, pages 187–

192, 2007.

[65] Gilbert W Stewart. On the early history of the singular value decomposition.

SIAM review, 35(4):551–566, 1993.

[66] J. Stober, L. Fishgold, and B. Kuipers. Learning the sensorimotor structure of

the foveated retina. In Proceedings of the Ninth International Conference on

Epigenetic Robotics, 2009.

[67] Jeremy Stober. CMACs in Python. https://bitbucket.org/stober/cmac, 2008.

[68] Jeremy Stober. Visual mountain car domain.

https://bitbucket.org/stober/vizmc/src, 2014.

[69] Jeremy Stober, Lewis Fishgold, and Benjamin Kuipers. Sensor map discovery

for developing robots. Technical report, AAAI, 2009.

[70] Jeremy Stober and Benjamin Kuipers. From pixels to policies: A bootstrapping

agent. In 7th IEEE International Conference on Development and Learning,

pages 103–108, 2008.

[71] Jeremy Stober, Risto Miikkulainen, and Benjamin Kuipers. Learning geome-

try from sensorimotor experience. In 2011 IEEE International Conference on

Development and Learning, volume 2, pages 1–6. IEEE, 2011.

[72] Daniel Stronger and Peter Stone. Towards autonomous sensor and actuator

model induction on a mobile robot. Connection Science, 18(2):97–119, 2006.

Special Issue on Developmental Robotics.

[73] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optimization methods and software, 11(1):625–653, 1999.

146

[74] B.W. Tatler, R.J. Baddeley, and I.D. Gilchrist. Visual correlates of fixation

selection: effects of scale and time. Vision Research, 45(5):643–659, 2005.

[75] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, 290(5500):2319–

2323, 2000.

[76] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cog-

nitive neuroscience, 3(1):71–86, 1991.

[77] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,

38(1):49–95, 1996.

[78] Heinz Warner and Seymour Wapner. The Innsbruck Studies on Distored Visual

Fields in Relation to an Organismic Theory of Perception. Psychological Review,

1955.

[79] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality

reduction by maximum variance unfolding. In The 21st National Conference on

Artificial intelligence, pages 1683–1686. AAAI Press, 2006.

[80] Kilian Q Weinberger and Lawrence K Saul. An introduction to nonlinear di-

mensionality reduction by maximum variance unfolding. In AAAI, volume 6,

pages 1683–1686, 2006.

[81] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and

E. Thelen. Artificial intelligence: Autonomous mental development by robots

and animals. Science, 291(5504):599, 2001.

147

	Acknowledgments
	Abstract
	Chapter Introduction
	Motivation
	Geometry in the Liberal Arts
	Geometry in Psychology
	Geometry in Robotics

	Challenge
	Approach
	Outline

	Chapter Background and Related Work
	Developmental Robotics
	Introduction
	Bootstrap Learning
	Related Work
	Conclusion

	Reinforcement Learning
	Introduction
	Markov Decision Process
	Least Squares Policy Iteration
	Tile Coding
	Related Work
	Conclusion

	Manifold Learning
	Introduction
	Formal Manifold Definition
	Linear Methods
	Isomap
	Maximum Variance Unfolding
	Distance Functions
	Related Work
	Conclusion

	Conclusion

	Chapter Sensorimotor Embedding
	Formal Definition
	Learning a Policy
	Action Traces
	Comparing Action Traces
	Applying Multidimensional Scaling

	Evaluating Sensorimotor Embedding
	Procrustes Analysis
	Feature Utility
	Distribution of Eigenvalues

	Discussion
	Conclusion

	Chapter Learning the Geometry of the Foveated Retina
	Motivation
	A Foveated Retina Model
	Learning Saccades
	Experiments
	Simulation Experiment
	Lesion and Vision Reversal Experiments
	Natural Scene and Pan/Tilt Experiments

	Discussion
	Conclusion

	Chapter Learning Robot Position
	Gridworld Experiments
	 Roving Eye
	Discussion
	Conclusion

	Chapter Learning Object Pose
	Motivation
	Setup
	Results
	Discussion
	Conclusion

	Chapter Learning Depth
	Motivation
	Setup
	Vergence
	Stereo Pairs
	Simulation

	Results
	Stereo Pairs
	Simulation

	Discussion
	Conclusion

	Chapter Visual Mountain Car
	Motivation
	Setup
	Results
	Discussion
	Conclusion

	Chapter Discussion and Future Work
	Perceptual Goals and Development
	Cognitive Models of Geometry
	Human Models of Eye Motion
	Probabilistic Sensorimotor Embedding
	Variations of Sensorimotor Embedding
	Visualization and Option Discovery
	Communicating Geometric Knowledge
	Conclusion

	Chapter Conclusions
	Contributions
	Conclusion

	Bibliography

