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To prove that one can neither define nor paint as the eye sees
—Abraham Bosse, 1665
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Human Geometric Knowledge



Jan Vredeman de Vries
Perspective, | 604

Eric Conklin
A Perspective Box with Views of a Vaulted Vestibule, 2003

Humans inturtively understand the dimension and geometry of
space.



At some point during development, we acquire this
knowledge of the dimension and geometry of space.



At some point during development, we acquire this
knowledge of the dimension and geometry of space.



Humans are tremendously
adaptable when confronted

with sensory change even
as adults.

Erismann (1930)



Transformed

Perceptual and Performatory

Adaptation to Visual Distortion

Hubert. Dolezal

to I

nver

-or example, humans can
e scooters with visio

INng goggles.
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Learning Geometry

 [The agent Is interested Iin external world geometric
properties.

Examples include robot coordinates; object pose; sensor
location.

How can agents learn corresponding internal
representations of these geometric properties!?



An agent that can autonomously learn gseometry should be able to

adapt to
lesioning,

adapt to Image
INversion,

run on different
robots.




Manifold Learning



Manifold Learning

* For a set of high-dimensional points, find a set of

representative low-dimensional points.

* For example, the low-dimensional points should have
the same inter-point distances.

Let {x1,...,xr} where z; € R"

find {y1,...,yr} where y; € R™ and m << n

such that ||x; — x|| = ||y — yj|-



Multidimensional Scaling
(MDS)

(Generate a matrix of inter-point distances A

and transform A — K where K is a Gram Matrix,

e.g. a matrix of dot products between all the original points.
Decompose K.

The highest weighted components represent the data.



Different methods of constructing A result in new
algorithms for manifold learning.



A local graph between point is
constructed using nearest
neighbors.

For distant points, the distance Is
computed as the shortest path
along the graph.
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Use distances across the manifolds surface to construct: Aiso



Action Respecting Embedding
(ARE)

Roving Eye domain from
Bowling et al.

e i o ._,‘.,_191%:41.3 0 [he robot infers its path
R N arqund the imgge by applying
action respecting embedding
to the images 1t takes along
the path.
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Find Aare as the solution to a optimization problem that
mMaximizes variance subject to action constraints.



Sensorimotor Embedding

Like Isomap and Action Respecting Embedding, Sensorimotor
Embedding constructs a new kind of distance matrix based on
action traces produced by policies:

A



Sensorimotor Embedding



Sensorimotor embedding 1s a manifold learning
algorithm that takes high dimensional
sensorimotor experience as Input and outputs
seometric features.




Sensorimotor Embedding

Algorithm

|. Learn a policy to acquire a perceptual goal.

2. Apply the policy from different start states and
record the resulting action traces.

3. Generate a matrix of distances by comparing

action traces.

4. Apply multidimensional scaling to the matrix of

action trace c

Istances to generate low

dimensional points associated with start states.



Example

» This example Is based on a

orid world.




Example

» This example Is based on a
orid world.

» [he agent can move to any of
eight adjacent states.




Example

» This example Is based on a
orid world.

» [he agent can move to any of
eight adjacent states.

 [he agent’s goal Is to reach ¥
the center state.




Step |

_earn a policy to achieve a
berceptual goal.

A policy is a function that
chooses an action for each
state.

Policy

W Y| KK
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Step |

_earn a policy to achieve a
berceptual goal.

A policy is a function that
chooses an action for each
state.

Policy
LR AV AR A"
N[Ny (KK
A |> -« | K
Alx| AR |<
AlA A XX




Step 2

* Apply the policy from different
start states and record the
resulting action traces.

tate Labels
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Step 2

* Apply the policy from different
start states and record the
resulting action traces.

Action Traces

0 W X
1 g —>
1|
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Step 3

» (Generate matrix of distances

by comparing action traces.

Parameterize actions using
unrt vectors in eight cardinal
directions.

Action Traces

0 W\
1 g —
11 |

Action Parameters

A

(0.71,-0.71)

—>

(1,0)




Comparing Action [races

1 ¢ —
11 ‘

- Compare the parameterized action traces using a
sequence metric:

6trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

1 (0.71-0.71) | (1,0)

11 (-1,0)

- Compare the parameterized action traces using a
sequence metric:

6trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

5trace({\>m %}v {i})

- Compare the parameterized action traces using a
sequence metric:

5trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

V(0.7 — —=1)2 4+ (—=0.71 — 0)2 4 /(— (0 —0)2

- Compare the parameterized action traces using a
sequence metric:

(Strace({a}?p {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

Otrace (1 N = 1, 14}) = 2.85

- Compare the parameterized action traces using a
sequence metric:

5trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

52(1,11) = Serace({N\y, =V, {1}) = 2.85

- Compare the parameterized action traces using a
sequence metric:

5trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

0 5.(0,1) - 6.(0,24)
5.(1,0) 0 oo 5.(1,24)
Aﬂ': :
5.(24,0) 6.(24,1) - 0

- Compare the parameterized action traces using a
sequence metric:

5trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Comparing Action [races

0 0.76 -~ 3.96

0.76 0 - 2.74
A, =

3.96 274 .- 0

- Compare the parameterized action traces using a
sequence metric:

5trace({a}?7 {b}l Zd at, bt _|_ Z d ata

* These distances are collected in a matrix of distances.



Step 4

Sensorimotor Distances Coordinates
0 0.76 ---  3.96 —1.1 1.6
0.76 0 oo 274 —1.5 0.9
MDS , . , . =
3.96 2.74 .. 0 1.1 —1.5

- Apply MDS to the matrix of distances to generate
low-dimensional points associated with start states.



Comparison to Ground [ruth

ground truth

5

4l 0 5 10 15 20

3| 1 6 11 16 21

51 2 7 12 17 22

1L 3 8 13 18 23

ok 4 9 14 19 24
-1




Comparison to Ground [ruth

2.0

mds - learned policy
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Policy and Geometry
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sensorimotor em bedding
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Policy Iterations
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As the policy improves, so does the learned

geometry.
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As the policy improves, so does the learned

geometry.
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Procrustes error

Shapes in the external world or
should equate to shapes in the 0 .
agents internal representation. 0
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This approach allows for changes in translation, scale, and

rotation. If sampled points come from the same shape then

the error will be low.
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Key Observations

- Better policies result in more accurate geometry.

- After the policy is learned and traces are collected,
Sensorimotor Embedding does not depend on the states.

- It the policy can adapt to change, so can the geometry.



Object Pose



The agent observes an object while trying to achieve a
perceptual goal state through manipulation.




The agent observes an object while trying to achieve a
perceptual goal state through manipulation.




Step |

* Learn a policy to achieve a
berceptual goal.

- [The perceptual goal state is
the normal view on a flat
surface.
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Aamumh Coordnate in the Viewng Sphene [degreas]

View biases in 30-36 month olds [Pereira et al, 201 01.

Policy Improvement

0 2 4 6 8 10 12
LTDQ Iterations

Policy improvement in the object pose domain.



Ground Truth

................
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO

- Apply the policy from different B jEitiifiiifiiiif’

start states and record the

................

resulting action traces. EEEEEEEERRRRRRERE

Sample action traces from N I
different inrtial (roll, yaw)
configurations.




Step 3

- (Generate matrix of distances by comparing action traces.

0. 155 15. --- 12, 125 14.°

155 0. 5. .-~ 245 235 25.5

15. 5. 0. --- 265 235 26.5
A, = .

12. 245 265 --- 0. 6. 4.5

125 235 235 --- 6. 0. T

14. 255 265 --- 45 7. 0.




MDS

Step 4

Iteration 12
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- Apply MDS to the matrix of distances to generate

low-dimensional points associated with start states.
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PCA
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As the policy improves, so does the learned

geometry.
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Applications of
Sensorimotor Embedding

* Learning structure of the foveated retina

* Visual mountain car task



Foveated Retina



Sensor Structure

A foveated sensor collects data at multiple overlapping
resolutions.

The goal is to maximize activation by moving the
fovea to the brightest point.

Agent manipulates a foveated sensor. The task Is
to maximize activation via saccades, e.g. single
ballistic actions.



Sensor Structure

Functional form of the policy:

1

m(s) = > 6(Ik,s) - m(s)

Rz(s) IL€T

where

7k(s) is the policy for the kth receptive field

d(Ik, s) is the activation of the kth receptive field

Rz(s) is the total retina activation

Fach sensor ‘'votes’ for a saccade.
Votes are welghted by activation.



Sensor Structure

Since actions are ballistic, each fields’ policy Is a vector that
can be interpreted as that fields position in the sensor:



Sensor Structure
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As the saccade policy improves (right), the learned

structure of the the sensor improves (left).



| esions

250

§ - A — Simple
- - Robust

200
1

Mean Activation
150

-------

T
0 1000 2000 3000 4000 5000

Tmestep

Simulate macular degeneration by
lesioning part of the fovea.

The underlying policy can adapt to lesioning. As the policy
adapts, so to does the learned geometry.



INnversion

300
Motor Reversal

250} ‘L

N
o
o

Reset

Reward Estimate
5 o
(=] (=]

wm
o

00 2000 4000 6600 8000
Timesteps

Simulate vision inversion by switching up
and down motor commands.

The agents policy can adapt to motor reversal, and as the
policy adapts, so does the learned geometry.



Visual Mountain Car



lask Description

. ®  QuickTime Player File fdt Veew Window Help VLIV OV E SOt FTe LM S@E QB

Goal

The agent has to power an under powered car out of a valley. Instead
of having access to position and velocity, the agent has to infer position
and velocity from sensorimotor experience.



lask Description

. ®  QuickTime Player File fdt Veew Window Help VLIV OV E SOt FTe LM S@E QB

Goal

The agent has to power an under powered car out of a valley. Instead
of having access to position and velocity, the agent has to infer position
and velocity from sensorimotor experience.



Depth reatures

Left Camera

8_6\'\"'\\. Visual Target
Track BT e -
| = | e @)
8 Z
Right Camera

Track Length
4dm

A robot moves along a track and at different points performs
a sequence of vergence actions to align left and right
cameras on a target object.



Depth Features

Sensorimotor Embedding
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After sensorimotor embedding, the one dimensional depth feature
resembles the true vergence angles. More distant positions result in
aliasing.



Results

Mountain Car Performance

800 : |
= o, i B 1 |
o v, =
O 600} v - |
< \

3 \
o 1 vy ] e
<500 | | Tt
=R RN I A I
0 \
o 1
2 400 \
wn \ 1 )
kS N T S (e
o S I N T
< 300 \
S N I R R
= '
S 200 1\ 1
< Il Sensorimotor Embedding| 7
100 F -l Position,Velocity 1= 1-- -1
F Random Agent

0 ! 1 l l

° 2 4 6 8 10

# of Training Steps (x10000)

An agent using sensorimotor embedding 1s compared to a random
agent and an agent training from (position, velocity) directly.

After sufficient training, the sensorimotor agent performs almost as
well as a regular agent.



Different Morphologies

Mountain Car Performance
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Sensorimotor embedding performs just as well on two
alternate robot morphologies without any modifications.



Future Work

0.35 Sensorimotor Embedding (Moutain Car)

0.30f
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Policy visualization with sensorimotor embedding. This may
allow for easier inspection and debugging of learned policies
when developing RL agents.



Conclusions

Sensorimotor embedding is a new manifold
learning algorithm.

Sensorimotor embedding is a
developmental approach to learning
geometry.

Sensorimotor embedding is robust to lesion
and inversion events, and can run on
different robots.

Sensorimotor embedding generates
geometric features that help agents solve
tasks.







