
Sensorimotor
Embedding

A developmental approach to learning
geometry

Jeremy Stober

Final Defense
May 6th 2015

 To prove that one can neither define nor paint as the eye sees
—Abraham Bosse, 1665

Outline
• Human Geometric Knowledge

• The Problem - Autonomously Learning Geometry

• A Review of Manifold Learning and Related Work

• A Description of Sensorimotor Embedding

• Applications of Sensorimotor Embedding

• Future Work and Conclusions

Human Geometric Knowledge

Humans intuitively understand the dimension and geometry of
space.

Eric Conklin
A Perspective Box with Views of a Vaulted Vestibule, 2003

Jan Vredeman de Vries
Perspective, 1604

?

At some point during development, we acquire this
knowledge of the dimension and geometry of space.

?

At some point during development, we acquire this
knowledge of the dimension and geometry of space.

Humans are tremendously
adaptable when confronted
with sensory change even
as adults.

Erismann (1930)

For example, humans can learn
to ride scooters with vision
inverting goggles.

Learning Geometry

• The agent is interested in external world geometric
properties.

• Examples include robot coordinates; object pose; sensor
location.

• How can agents learn corresponding internal
representations of these geometric properties?

adapt to
lesioning,

adapt to image
inversion,

run on different
robots.

An agent that can autonomously learn geometry should be able to

Manifold Learning

Manifold Learning
• For a set of high-dimensional points, find a set of

representative low-dimensional points.

• For example, the low-dimensional points should have
the same inter-point distances.

Let {x1, . . . , xk} where xi 2 Rn

find {y1, . . . , yk} where yi 2 Rm and m << n

such that ||xi � xj || ⇡ ||yi � yj ||.

Multidimensional Scaling
(MDS)

Generate a matrix of inter-point distances �

and transform � ! K where K is a Gram Matrix,

e.g. a matrix of dot products between all the original points.

Decompose K.

The highest weighted components represent the data.

Different methods of constructing result in new
algorithms for manifold learning.

�

Isomap

�
iso

Use distances across the manifolds surface to construct:

A local graph between point is
constructed using nearest
neighbors.

For distant points, the distance is
computed as the shortest path
along the graph.

Action Respecting Embedding
(ARE)

�areFind as the solution to a optimization problem that
maximizes variance subject to action constraints.

Roving Eye domain from
Bowling et al.

The robot infers its path
around the image by applying
action respecting embedding
to the images it takes along
the path.

Sensorimotor Embedding

Like Isomap and Action Respecting Embedding, Sensorimotor
Embedding constructs a new kind of distance matrix based on
action traces produced by policies:

�⇡

Sensorimotor Embedding

Sensorimotor embedding is a manifold learning
algorithm that takes high dimensional
sensorimotor experience as input and outputs
geometric features.

Sensorimotor Embedding
Algorithm

1. Learn a policy to acquire a perceptual goal.
2. Apply the policy from different start states and
record the resulting action traces.

3. Generate a matrix of distances by comparing
action traces.

4. Apply multidimensional scaling to the matrix of
action trace distances to generate low
dimensional points associated with start states.

• This example is based on a
grid world.

Example

• This example is based on a
grid world.

• The agent can move to any of
eight adjacent states.

Example

• This example is based on a
grid world.

• The agent can move to any of
eight adjacent states.

• The agent’s goal is to reach
the center state.

Example

Step 1

• Learn a policy to achieve a
perceptual goal.

• A policy is a function that
chooses an action for each
state.

Policy

Step 1

• Learn a policy to achieve a
perceptual goal.

• A policy is a function that
chooses an action for each
state. Policy

Step 2

• Apply the policy from different
start states and record the
resulting action traces. 12

0 5 10 15 20

1 6 11 16 21

3 8 13 18 23

4 9 14 19 24

2 7 17 22

State Labels

Policy

Step 2

• Apply the policy from different
start states and record the
resulting action traces. 12

0 5 10 15 20

1 6 11 16 21

3 8 13 18 23

4 9 14 19 24

2 7 17 22

State Labels

0
1
…
11
…

Action Traces
Policy

Step 3

• Generate matrix of distances
by comparing action traces.

• Parameterize actions using
unit vectors in eight cardinal
directions.

(0.71,-0.71)

(1,0)

… …

0
1
…
11
…

Action Traces

Action Parameters

Comparing Action Traces

1

11

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

1 (0.71,-0.71) (1,0)

11 (-1,0)

• These distances are collected in a matrix of distances.

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�trace({&,!}, {#})

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

p
(0.71��1)2 + (�0.71� 0)2 +

p
(�1� 0)2 + (0� 0)2

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�trace({&,!}, {#}) = 2.85

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�⇡(1, 11) ⌘ �trace({&,!}, {#}) = 2.85

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�⇡ =

2

6664

0 �⇡(0, 1) · · · �⇡(0, 24)
�⇡(1, 0) 0 · · · �⇡(1, 24)

...
...

. . .
...

�⇡(24, 0) �⇡(24, 1) · · · 0

3

7775

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Comparing Action Traces

• Compare the parameterized action traces using a
sequence metric:

• These distances are collected in a matrix of distances.

�⇡ =

2

6664

0 0.76 · · · 3.96
0.76 0 · · · 2.74
...

...
. . .

...
3.96 2.74 · · · 0

3

7775

�trace({a}n1 , {b}m1) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).

Step 4

• Apply MDS to the matrix of distances to generate
low-dimensional points associated with start states.

MDS

0

BBB@

0 0.76 · · · 3.96
0.76 0 · · · 2.74
...

...
. . .

...
3.96 2.74 · · · 0

1

CCCA
=

0

BBB@

�1.1 1.6
�1.5 0.9
...

...
1.1 �1.5

1

CCCA

CoordinatesSensorimotor Distances

Comparison to Ground Truth

Comparison to Ground Truth

Policy and Geometry

As the policy improves, so does the learned
geometry.

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Policy Iterations

Pr
oc

ru
st

es
 E

rro
r

Policy and Geometry

As the policy improves, so does the learned
geometry.

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Policy Iterations

Pr
oc

ru
st

es
 E

rro
r

orShapes in the external world
should equate to shapes in the
agent’s internal representation.

Procrustes Error

This approach allows for changes in translation, scale, and
rotation. If sampled points come from the same shape then
the error will be low.

Error 0.12 Error 6e-6Original Points

Procrustes Error

Key Observations

• Better policies result in more accurate geometry.

• After the policy is learned and traces are collected,
Sensorimotor Embedding does not depend on the states.

• If the policy can adapt to change, so can the geometry.

Object Pose

The agent observes an object while trying to achieve a
perceptual goal state through manipulation.

The agent observes an object while trying to achieve a
perceptual goal state through manipulation.

Step 1

• Learn a policy to achieve a
perceptual goal.

• The perceptual goal state is
the normal view on a flat
surface.

View biases in 30-36 month olds [Pereira et al, 2010].

Policy improvement in the object pose domain.

Step 2

• Apply the policy from different
start states and record the
resulting action traces.

• Sample action traces from
different initial (roll, yaw)
configurations.

Step 3

• Generate matrix of distances by comparing action traces.

�⇡ =

2

6666666664

0. 15.5 15. · · · 12. 12.5 14.
15.5 0. 5. · · · 24.5 23.5 25.5
15. 5. 0. · · · 26.5 23.5 26.5

...
12. 24.5 26.5 · · · 0. 6. 4.5
12.5 23.5 23.5 · · · 6. 0. 7.
14. 25.5 26.5 · · · 4.5 7. 0.

3

7777777775

Step 4

MDS(�⇡) =

• Apply MDS to the matrix of distances to generate
low-dimensional points associated with start states.

Comparison

Sensorimotor Embedding

PCA

Isomap

Ground Truth

`

• Sensorimotor
Embedding
outperforms both
PCA and Isomap.

As the policy improves, so does the learned
geometry.

Policy and Geometry

As the policy improves, so does the learned
geometry.

Policy and Geometry

Applications of
Sensorimotor Embedding

• Learning structure of the foveated retina

• Learning robot position

• Learning object pose

• Learning stereo image depth

• Visual mountain car task

Foveated Retina

Sensor Structure

Agent manipulates a foveated sensor. The task is
to maximize activation via saccades, e.g. single
ballistic actions.

A foveated sensor collects data at multiple overlapping
resolutions.

The goal is to maximize activation by moving the
fovea to the brightest point.

Sensor Structure

Each sensor “votes” for a saccade.
Votes are weighted by activation.

⇡(s) =
1

RI(s)

X

Ik2I
�(Ik, s) · ⇡k(s)

where

⇡k(s) is the policy for the kth receptive field

�(Ik, s) is the activation of the kth receptive field

RI(s) is the total retina activation

Functional form of the policy:

Sensor Structure

Since actions are ballistic, each fields’ policy is a vector that
can be interpreted as that fields’ position in the sensor.

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

Timestep

A
ve

ra
ge

 R
ec

ep
tiv

e
Fi

el
d

D
is

pl
ac

em
en

t

−800 −600 −400 −200 0 200 400 600 800−1000

−800

−600

−400

−200

0

200

400

600

800

+ +

+

+

+ +

+
+

+

+

+

+
+

+

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
Training Examples

A
ve

ra
ge

 P
os

t⌧
S

ac
ca

de
 R

ew
ar

d

As the saccade policy improves (right), the learned
structure of the the sensor improves (left).

Sensor Structure

Lesions

Simulate macular degeneration by
lesioning part of the fovea.

The underlying policy can adapt to lesioning. As the policy
adapts, so to does the learned geometry.

Inversion

Simulate vision inversion by switching up
and down motor commands.

The agent’s policy can adapt to motor reversal, and as the
policy adapts, so does the learned geometry.

Visual Mountain Car

Goal

Task Description

The agent has to power an under powered car out of a valley. Instead
of having access to position and velocity, the agent has to infer position

and velocity from sensorimotor experience.

Goal

Task Description

The agent has to power an under powered car out of a valley. Instead
of having access to position and velocity, the agent has to infer position

and velocity from sensorimotor experience.

4m

ϴ
�

Visual Target
Left Camera

Right Camera

Track B

Z

Track Length

Depth Features

A robot moves along a track and at different points performs
a sequence of vergence actions to align left and right
cameras on a target object.

Depth Features

After sensorimotor embedding, the one dimensional depth feature
resembles the true vergence angles. More distant positions result in
aliasing.

Results

An agent using sensorimotor embedding is compared to a random
agent and an agent training from (position, velocity) directly.

After sufficient training, the sensorimotor agent performs almost as
well as a regular agent.

Different Morphologies

Sensorimotor embedding performs just as well on two
alternate robot morphologies without any modifications.

Future Work

Policy visualization with sensorimotor embedding. This may
allow for easier inspection and debugging of learned policies
when developing RL agents.

"Quick Escape"

"Failure"

"Interesting"

Conclusions
• Sensorimotor embedding is a new manifold

learning algorithm.

• Sensorimotor embedding is a
developmental approach to learning
geometry.

• Sensorimotor embedding is robust to lesion
and inversion events, and can run on
different robots.

• Sensorimotor embedding generates
geometric features that help agents solve
tasks.

Questions?

