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 To prove that one can neither define nor paint as the eye sees
—Abraham Bosse, 1665
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Human Geometric Knowledge



Humans intuitively understand the dimension and geometry of 
space. 

Eric Conklin
A Perspective Box with Views of a Vaulted Vestibule, 2003

Jan Vredeman de Vries
Perspective, 1604



?

At some point during development, we acquire this 
knowledge of the dimension and geometry of space.



?

At some point during development, we acquire this 
knowledge of the dimension and geometry of space.



Humans are tremendously 
adaptable when confronted 
with sensory change even 
as adults.

Erismann (1930)



For example, humans can learn 
to ride scooters with vision 
inverting goggles.



Learning Geometry

• The agent is interested in external world geometric 
properties.

• Examples include robot coordinates; object pose; sensor 
location.

• How can agents learn corresponding internal 
representations of these geometric properties?



adapt to 
lesioning,

adapt to image 
inversion,

run on different 
robots.

An agent that can autonomously learn geometry should be able to



Manifold Learning



Manifold Learning
• For a set of high-dimensional points, find a set of 

representative low-dimensional points.

• For example, the low-dimensional points should have 
the same inter-point distances.

Let {x1, . . . , xk} where xi 2 Rn

find {y1, . . . , yk} where yi 2 Rm and m << n

such that ||xi � xj || ⇡ ||yi � yj ||.



Multidimensional Scaling 
(MDS)

Generate a matrix of inter-point distances �

and transform � ! K where K is a Gram Matrix,

e.g. a matrix of dot products between all the original points.

Decompose K.

The highest weighted components represent the data.



Different methods of constructing      result in new 
algorithms for manifold learning.

�



Isomap

�
iso

Use distances across the manifolds surface to construct:

A local graph between point is 
constructed using nearest 
neighbors.

For distant points, the distance is 
computed as the shortest path 
along the graph.



Action Respecting Embedding 
(ARE)

�areFind as the solution to a optimization problem that 
maximizes variance subject to action constraints.

Roving Eye domain from 
Bowling et al.

The robot infers its path 
around the image by applying 
action respecting embedding 
to the images it takes along 
the path.



Sensorimotor Embedding

Like Isomap and Action Respecting Embedding,  Sensorimotor 
Embedding constructs a new kind of distance matrix based on 
action traces produced by policies:

�⇡



Sensorimotor Embedding



Sensorimotor embedding is a manifold learning 
algorithm that takes high dimensional 
sensorimotor experience as input and outputs 
geometric features.



Sensorimotor Embedding 
Algorithm

1. Learn a policy to acquire a perceptual goal.
2. Apply the policy from different start states and 
record the resulting action traces.

3. Generate a matrix of distances by comparing 
action traces.

4. Apply multidimensional scaling to the matrix of 
action trace distances to generate low 
dimensional points associated with start states.



• This example is based on a 
grid world. 

Example



• This example is based on a 
grid world. 

• The agent can move to any of 
eight adjacent states.

Example



• This example is based on a 
grid world. 

• The agent can move to any of 
eight adjacent states.

• The agent’s goal is to reach 
the center state.

Example



Step 1

• Learn a policy to achieve a 
perceptual goal.

• A policy is a function that 
chooses an action for each 
state.

Policy



Step 1

• Learn a policy to achieve a 
perceptual goal.

• A policy is a function that 
chooses an action for each 
state. Policy



Step 2

• Apply the policy from different 
start states and record the 
resulting action traces. 12
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Step 2

• Apply the policy from different 
start states and record the 
resulting action traces. 12
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Step 3

• Generate matrix of distances 
by comparing action traces.

• Parameterize actions using 
unit vectors in eight cardinal 
directions.

(0.71,-0.71)

(1,0)

… …

0
1
…
11
…

Action Traces

Action Parameters



Comparing Action Traces

1

11

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

1 (0.71,-0.71) (1,0)

11 (-1,0)
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mX
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d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:
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d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

p
(0.71��1)2 + (�0.71� 0)2 +

p
(�1� 0)2 + (0� 0)2

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

�trace({&,!}, {#}) = 2.85

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

�⇡(1, 11) ⌘ �trace({&,!}, {#}) = 2.85

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

�⇡ =

2

6664

0 �⇡(0, 1) · · · �⇡(0, 24)
�⇡(1, 0) 0 · · · �⇡(1, 24)

...
...

. . .
...

�⇡(24, 0) �⇡(24, 1) · · · 0

3

7775

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Comparing Action Traces

• Compare the parameterized action traces using a 
sequence metric:

• These distances are collected in a matrix of distances.

�⇡ =

2

6664

0 0.76 · · · 3.96
0.76 0 · · · 2.74
...

...
. . .

...
3.96 2.74 · · · 0

3

7775

�trace({a}n1 , {b}m1 ) =
mX

t=1

d(at, bt) +
nX

t=m+1

d(at, 0).



Step 4

• Apply MDS to the matrix of distances to generate 
low-dimensional points associated with start states.

MDS

0

BBB@
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Comparison to Ground Truth



Comparison to Ground Truth



Policy and Geometry

As the policy improves, so does the learned 
geometry.
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Policy and Geometry

As the policy improves, so does the learned 
geometry.
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orShapes in the external world 
should equate to shapes in the 
agent’s internal representation.

Procrustes Error



This approach allows for changes in translation, scale, and 
rotation. If sampled points come from the same shape then 
the error will be low.

Error 0.12 Error 6e-6Original Points

Procrustes Error



Key Observations

• Better policies result in more accurate geometry.

• After the policy is learned and traces are collected, 
Sensorimotor Embedding does not depend on the states.

• If the policy can adapt to change, so can the geometry.



Object Pose



The agent observes an object while trying to achieve a 
perceptual goal state through manipulation.



The agent observes an object while trying to achieve a 
perceptual goal state through manipulation.



Step 1

• Learn a policy to achieve a 
perceptual goal.

• The perceptual goal state is 
the normal view on a flat 
surface.

View biases in 30-36 month olds [Pereira et al, 2010].  

Policy improvement in the object pose domain.



Step 2

• Apply the policy from different 
start states and record the 
resulting action traces.

• Sample action traces from 
different initial (roll, yaw) 
configurations.



Step 3

• Generate matrix of distances by comparing action traces.

�⇡ =

2

6666666664

0. 15.5 15. · · · 12. 12.5 14.
15.5 0. 5. · · · 24.5 23.5 25.5
15. 5. 0. · · · 26.5 23.5 26.5

...
12. 24.5 26.5 · · · 0. 6. 4.5
12.5 23.5 23.5 · · · 6. 0. 7.
14. 25.5 26.5 · · · 4.5 7. 0.

3

7777777775



Step 4

MDS(�⇡) =

• Apply MDS to the matrix of distances to generate 
low-dimensional points associated with start states.



Comparison

Sensorimotor Embedding

PCA

Isomap

Ground Truth

`

• Sensorimotor 
Embedding 
outperforms both 
PCA and Isomap.



As the policy improves, so does the learned 
geometry.

Policy and Geometry



As the policy improves, so does the learned 
geometry.

Policy and Geometry



Applications of 
Sensorimotor Embedding

• Learning structure of the foveated retina

• Learning robot position

• Learning object pose

• Learning stereo image depth

• Visual mountain car task



Foveated Retina



Sensor Structure

Agent manipulates a foveated sensor. The task is 
to maximize activation via saccades, e.g. single 
ballistic actions.

A foveated sensor collects data at multiple overlapping 
resolutions.

The goal is to maximize activation by moving the 
fovea to the brightest point.



Sensor Structure

Each sensor “votes” for a saccade. 
Votes are weighted by activation. 

⇡(s) =
1

RI(s)

X

Ik2I
�(Ik, s) · ⇡k(s)

where

⇡k(s) is the policy for the kth receptive field

�(Ik, s) is the activation of the kth receptive field

RI(s) is the total retina activation

Functional form of the policy:



Sensor Structure

Since actions are ballistic, each fields’ policy is a vector that 
can be interpreted as that fields’ position in the sensor.
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As the saccade policy improves (right), the learned 
structure of the the sensor improves (left).

Sensor Structure



Lesions

Simulate macular degeneration by 
lesioning part of the fovea.

The underlying policy can adapt to lesioning. As the policy 
adapts, so to does the learned geometry.



Inversion

Simulate vision inversion by switching up 
and down motor commands.

The agent’s policy can adapt to motor reversal, and as the 
policy adapts, so does the learned geometry.



Visual Mountain Car



Goal

Task Description

The agent has to power an under powered car out of a valley. Instead 
of having access to position and velocity, the agent has to infer position 

and velocity from sensorimotor experience. 



Goal

Task Description

The agent has to power an under powered car out of a valley. Instead 
of having access to position and velocity, the agent has to infer position 

and velocity from sensorimotor experience. 



4m

ϴ
�

Visual Target
Left Camera

Right Camera

Track B

Z

Track Length

Depth Features

A robot moves along a track and at different points performs 
a sequence of vergence actions to align left and right 
cameras on a target object.



Depth Features

After sensorimotor embedding, the one dimensional depth feature 
resembles the true vergence angles. More distant positions result in 
aliasing.



Results

An agent using sensorimotor embedding is compared to a random 
agent and an agent training from (position, velocity) directly.

After sufficient training, the sensorimotor agent performs almost as 
well as a regular agent.



Different Morphologies

Sensorimotor embedding performs just as well on two 
alternate robot morphologies without any modifications.



Future Work

Policy visualization with sensorimotor embedding. This may 
allow for easier inspection and debugging of learned policies 
when developing RL agents.

"Quick Escape"

"Failure"

"Interesting"



Conclusions
• Sensorimotor embedding is a new manifold 

learning algorithm.

• Sensorimotor embedding is a 
developmental approach to learning 
geometry.

• Sensorimotor embedding is robust to lesion 
and inversion events, and can run on 
different robots.

• Sensorimotor embedding generates 
geometric features that help agents solve 
tasks.



Questions?


