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Abstract
A baby experiencing the world for the first time
faces a considerable challenging sorting through
what William James called the “blooming, buzzing
confusion” of the senses. With the increasing ca-
pacity of modern sensors and the complexity of
modern robot bodies, a robot in an unknown or un-
familiar body faces a similar and equally daunting
challenge.
Addressing this challenge directly by designing
robot agents capable of resolving the confusion
of sensory experience in an autonomous man-
ner would substantially reduce the engineering re-
quired to program robots and the improve the ro-
bustness of resulting robot capabilities. Working
towards a general solution to this problem, this
work uses distinctive state abstractions and senso-
rimotor embedding to generate basic knowledge of
sensor structure, local geometry, and object geom-
etry starting with uninterpreted sensors and effec-
tors.

1 Introduction
Sensorimotor development is the first stage of construc-
tivist theories of child development. During this period in-
fants construct egocentric representations of the world that
serve as a conceptual basis for later learning. For develop-
ing robot agents the challenge is clear. Starting with what
William James termed “the blooming, buzzing confusion” of
the senses generate useful egocentric representations of the
world. With this in mind consider the following sensorimo-
tor geometry problem:

Design a developmental process that, for any
roughly humanoid robot, starting only with a ba-
sic set of sensor primitives and motor reflexes, pro-
gresses through a period of sensorimotor develop-
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ment that results in knowledge of body, sensor and
object location and geometry.

In robotics, advances in simultaneous localization and
mapping (SLAM) have allowed robotic agents to acquire spa-
tial knowledge of the environment along with accurate esti-
mates of a robot’s pose within the environment.

Unfortunately, these methods require that an engineer
specify sensor and action models, as well as the target rep-
resentation of space. The area of developmental robotics in-
cludes algorithms that enable agents to acquire foundational
knowledge that is normally ”engineered in” under more tra-
ditional paradigms. A developmental approach to acquiring
geometric knowledge of space and objects avoids this need to
specify models in advance.

If such an approach exists then robots can understand new
sensors or changes to existing sensors and engineers avoid
having to provide models. The completed and proposed
work presented here focuses on the important sub-problem of
learning about geometry of sensors, space, and objects from
sensorimotor experience.

2 Related Work
There are a number of existing approaches to solving the sen-
sorimotor geometry problem. Pierce and Kuipers [1997] used
dimensionality reduction methods to learn geometry of robot
sensors and motors. Philipona and O’Regan [2010] devel-
oped a sensorimotor approach using ISOMAP for learning
spatial structure from uninterpreted sensors and effectors, and
Bowling et al. [2007] developed action respecting embed-
ding (ARE) while working towards a solution to the problem
of subjective localization (solving SLAM problems without
sensor and action models).

These methods all suffer shortcomings. For example, di-
mensionality reduction alone may not be sufficient for learn-
ing spatial and geometric concepts beyond sensor organiza-
tion as these methods are sensitive to the policy used to con-
trol the agent during data collection. Advanced approaches
such as ARE are based on maximum-variance unfolding,
which has scaling problems on large datasets and may not
cope with the firehose of experience. This work presents an
alternative general method of extracting geometric informa-
tion from raw sensory experience through interaction with
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Figure 1: In (b) the agent’s task is to efficiently navigate to
the central distinctive state. (a) shows an embedding gener-
ated using ISOMAP with local distances given by the magni-
tude of local actions. (c) shows the improved result of using
sensorimotor embedding, which computes distances between
states by comparing sequences of actions generated by an op-
timal policy.

the environment that addresses the drawbacks of existing ap-
proaches.

3 Acquiring Geometric Knowledge
For an agent starting with only raw sensory experience and
the ability to interact with the environment, acquiring geo-
metric knowledge of the environment is a difficult task. The
proposed solution to the problem proceeds in several steps.

The first step is designed to manage the “firehose of ex-
perience.” The agent forms a distinctive state abstraction in
order to divide sensory experience into manageable chunks
[Provost et al., 2006]. This method of abstraction has been
used to solve high-diameter reinforcement learning problems
and provides a concrete set of policy improvement goals for
developing agents. During the second step, an agent learns
accurate policies for acquiring and moving between distinc-
tive states. In the final step shown in Figure 1, an agent in-
fers geometric properties of the world using manifold learn-
ing methods and dynamic time warping by analyzing action
sequences generated by learned policies.

4 Completed Work
Completed work has shown how to derive sensor geometry
from raw interactive experience using sensorimotor embed-
ding [Stober et al., 2009]. In these experiments, the agent
had access to a foveated (non-uniform) array of sense ele-
ments. The agent also had the ability to perform ballistic ac-
tions known in human visual processing as saccades. Using
sensorimotor embedding agents could learn the structure of a
foveated retina by analysing learned saccade policies.

Since retinal geometry is derived from learned saccade
policies, adjustments to the saccade policy that governs eye
movement, in response to degradation or other changes, also
results in adjustments to the agent’s understanding of retinal
geometry. In experiments agents using sensorimotor embed-
ding could adapt to even complete inversions of the visual
field as well as forms of simulated macular degeneration.

5 Proposed Work
Proposed work will focus on applying the principles of sen-
sorimotor embedding to two new problem domains. The first,

subjective localization, has already been mentioned as part of
related work. Since the proposed work and related work share
a common platform, direct comparison between sensorimo-
tor embedding, ARE, and other manifold learning approaches
will be possible.

The second area of proposed work is applying sensorimo-
tor embedding to the problem of learning visual 3D object
models. Recent work in computer vision has focused on gen-
erating object models using homographies between distinc-
tive views [Savarese and Fei Fei, 2007]. Instead of homogra-
phies between distinctive views, a sensorimotor approach to
building 3D object models would use policies that allow an
agent to bring about distinctive views.

Extending this work to use interactions between a robot
and an object leads naturally to considering self-generated
views, a phenomenon that has also been studied in humans.
Preliminary results indicate that the process of forming sen-
sorimotor embedding models of objects results in viewpoint
biases that mimic the biases found in data collected from hu-
mans.

6 Conclusion
Distinctive state abstractions manage the firehose of expe-
rience and provide concrete policy improvement goals for
agents with uninterpreted sensors and effectors. Using sen-
sorimotor embedding an agent can extract geometric knowl-
edge from sequences of actions generated using learned poli-
cies for navigating to and between distinctive states. Since
representations of geometry are derived from actions in sen-
sorimotor embedding, the resulting geometric representations
are naturally calibrated to the agent’s own body.
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