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Abstract

Robots with many sensors are capable of generating
volumes of high-dimensional perceptual data. Making
sense of this data and extracting useful knowledge from
it is a difficult problem. For robots lacking proper mod-
els, trying to understand a stream of uninterpreted data
is an especially acute problem. One critical step in link-
ing raw uninterpreted perceptual data to cognition is di-
mensionality reduction.
Current methods for reducing the dimension of data do
not meet the demands of a robot situated in the world,
and methods that use only perceptual data do not take
full advantage of the interactive experience of an em-
bodied robot agent. This work proposes a new scal-
able, incremental and active approach to dimensionality
reduction suitable for extracting geometric knowledge
from uninterpreted sensors and effectors.
The proposed method uses distinctive state abstractions
to organize early sensorimotor experience and sensori-
motor embedding to incrementally learn accurate ge-
ometric representations based on experience. This ap-
proach is applied to the problem of learning the geome-
try of sensors, space, and objects. The result is evaluated
using techniques from statistical shape analysis.

Introduction
In the early stages of development infants form ego-centric
models of the world, which then form the basis for learning
more advanced concepts. A robot waking up in an unfamiliar
body faces a similar challenge, and acquiring an ego-centric
model that includes details of the sensor, space, and object
geometry would facilitate learning more advanced concepts.
One immediate barrier to acquiring geometric representa-
tions is the high-dimensional nature of uninterpreted sensor
signals. The real-time high-dimensional nature of the signals
presents a real challenge for existing state-of-the-art mani-
fold learning and dimensionality reduction methods.
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When robots have access to sensor and action models as
well as a target representation of space, then the models pro-
vide an effective method for reducing the dimension of sen-
sory signals by allowing the agent to estimate the value of
a small set of unobservable variables in the target represen-
tation. For example, solutions to the important problem of
simultaneous localization and mapping (SLAM) involve an
agent using sensor and action models to estimate both the
world geometry and the robot pose.

The introduction of apriori models into any robotic sys-
tem does have disadvantages. For example, the models have
to be supplied by an engineer who is knowledgeable about
the relevant aspects of the design of the robot. Once a robot
is operating independently in the world, the assumptions that
went into designing the original system may break down due
to physical changes in the robot.

Unlike robots, a human’s ability to interpret sensor signals
is remarkably plastic. For example, humans can adapt over
time to such radical changes as complete inversions of the
visual field (Dolezal 1982) or even entirely new modes of
visual input (Bach-y Rita 2004). State of the art robots would
fail under the same difficult circumstances, yet humans show
a remarkable ability to adapt. The goal of this work is to
develop methods that give robots similar abilities.

Related Work
In manifold learning the variation in perceptual information
is assumed to be caused by variation in a small number
of continuous unobservable variables. As an example, in a
static world the variation of a robot’s sensor readings over
time is the result of a robot’s changing pose. Even though
the variation in robot sensor readings is high dimensional,
the cause of those variations is attributable to the variation
in a small number of pose parameters.

For pure perceptual methods, attempting to infer changes
in latent variables is a difficult task because of the com-
plexity of the relationship between the latent space and
the high-dimensional observations. In an interactive envi-
ronment, where changes in agent perception are mediated
by agent actions, better methods of discovering low dimen-
sional representations are possible.

For instance, Bowling et al. (2007), in their work on ac-
tion respecting embedding (ARE), demonstrated that includ-
ing information about agent actions is useful for forming



accurate low-dimensional embeddings of sensor informa-
tion. In other work, Philipona et al. (2010) have shown how
ISOMAP can be extended using information derived from
local agent actions.

The approach presented here builds on prior work and
seeks to solve several outstanding issues. For example,
bounds on computational resources makes applying mani-
fold learning difficult in situations involving lifetime learn-
ing of embodied agents. In addition, methods that use only
local information like ISOMAP can fail to recognize im-
portant aspects of the global state space geometry. Finally,
many traditional methods for dimensionality reduction fail
to identify the appropriate scale for data, opting instead
for some normalized scale for the resulting representation.
The method presented here offers a compelling alternative,
where scale is determined based on agent actions and cali-
brated to an agent’s own body.

Modeling Geometry
In the completed and proposed work, an agent takes a multi-
step approach to acquiring geometric knowledge. First, an
agent forms a distinctive state abstraction (DSA) using a
simple set of hill-climbing control laws. The fixed points of
these control laws are the distinctive states. The DSA al-
lows the agent to scale the learning process to large domains
by separating large domains into local learning problems
around each distinctive state. The DSA provides a concrete
set of policy improvement goals for efficiently moving to
and between distinctive states.

As the agent learns progressively better policies, the agent
applies sensorimotor embedding to extract geometric knowl-
edge implicit in the learned policies. Sensorimotor embed-
ding first computes similarities between all states in the re-
gion of a single distinctive state. The similarity between any
two states, s and s′, is computed by comparing the sequences
of actions, < ai >

n−1
1 and < a′j >

m−1
1 , generated by the

policy πi, that bring an agent to a shared distinctive state.
Formally,

δπi
(s, s′) ≡ DTW(< ai >

n−1
1 , < a′j >

m−1
1 ),

where DTW stands for dynamic time warping.
Within each region of a distinctive state, the geometric

representation of the local state space is generated using
multidimensional scaling applied to the matrix of dynamic
time warping comparisons (Figure 1).

Completed and Proposed Work
Stober et al. (2009) have shown how sensorimotor embed-
ding can be applied to learning the structure of a foveated
(non-uniform) sensor. In that work the sensor geometry was
derived from a learned saccade policy. This method was
shown to have several important advantages, as the learned
sensor geometry could adapt dynamically to considerable
changes in actual sensor geometry, including total visual in-
version and simulated macular degeneration.

Proposed work will focus on learning the structure of
space and objects using the same process. For learning spa-
tial geometry, this method will be compared directly with
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Figure 1: (a) shows an optimal policy in a grid-world with
one distinctive goal state. (b) shows the decrease in geom-
etry error as the policy improves. (c) shows the final repre-
sentation of the relative positions of the states using sensori-
motor embedding and an optimal policy.

ARE in the IMAGEBOT domain. In addition, recent work
on learning object geometry in computer vision has relied
on relating distinctive views of objects using homographies
(Savarese and Fei Fei 2007). The proposed method will
build object models using distinctive states and learned poli-
cies for navigating to and between these distinctive states.

The primary method of evaluation will involve comparing
computed geometry with ground truth geometry using sam-
ple points drawn from both representations. These point sets
can be compared using statistical shape analysis. Secondary
analysis such as scree diagrams and subjective comparisons
of the resulting representations will also be performed.

Conclusion
The proposed and completed work provides a incremental,
scalable and active method for learning geometry from sen-
sorimotor experience. BothDSAs and sensorimotor embed-
ding provide developing agents with new tools to understand
and adapt to uninterpreted sensors and effectors in complex
environments.
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