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Introduction
As the field of robotics advances, the deployment possibilities
for autonomous robots increase, along with the expected
lifetimes of these robots, requiring robot components that have
very low failure rates or degrade in a manner minimizes
changes to robot capabilities.

In addition to dealing with degrading physical capabilities, we
should expect long lived autonomous robots to be able to
augment their physical capabilities by adding or replacing
sensors and effectors.

Current approaches to robot control, even those that provide
robust control, often depend on the assumption that the robot
model is constant over the life of the robot. We identify mental
adjustment mechanisms that autonomous robots can use to
detect and adapt to physical changes in circumstances where
physical constancy does not hold.

Example Physical Changes
Sensor Degradation and Augmentation
I Damaged Vision System. A vision system with camera damage may

need to adjust policies to compensate for the damage.
I Adding a Sensor. Visual features extracted from a new sensor need to

be understood in terms of other, pre-existing sensors, and existing tasks.

Motor Degradation and Augmentation
I Damaged Components. Damage introduces new physical constraints.

Without detection and adaption, plans that do not recognize new
constraints will have a higher chance of failure.

I Adding Components. With an additional effectors, the robot needs to
adapt to a new action model in order to take advantage of new
capabilities.

References
[1] J. Stober, L. Fishgold, and B. Kuipers.

Sensor map discovery for developing robots.
In AAAI Fall Symposium on Manifold Learning and Its Applications, 2009.

[2] J. Stober and B. Kuipers.
From pixels to policies: A bootstrapping agent.
In 7th IEEE International Conference on Development and Learning, pages 103–108, 2008.

Autonomous Feature Discovery [2]
A major issue in sensor augmentation is discovering what
features, if any, a new sensor provides that would be relevant
for completing a robot’s assigned tasks.
Often, in reinforcement learning or control studies, the
features are carefully designed in advance, and the focus is
on learning optimal control policies in terms of these
pre-determined features.
An autonomous robot, augmenting itself, may not have the
benefit of an outside opinion regarding the importance of new
sensor features. To address this, we present an approach to
autonomous feature discovery.

From Pixels to Policies

We demonstrated a method for discovering task-relevant
features by searching over expressions composed of
commonly available visual properties of objects.

Generating Features
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Starting with trackers into the sensor stream, the agent uses
heuristic search and qualitative abstraction to generate
features for reinforcement learning.
The agent measures the effective policy contribution of
generated features (above plot) to determine which features
should remain in the representation.
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Agents attempt to learn a simple volley task in a Pong
environment.
With autonomous feature discovery, a simple agent learns
faster than when using a naive feature set.

Sensorimotor Embedding [1]
A useful skill for an active vision system is the ability to center
on a salient object in a scene.
We show how to robustly learn this centering skill using
reinforcement learning and a foveated retina.

Learning the Policy

Each receptive field measures the saliency of a portion of a
scene, Ik ∈ I, and depends on the global state of the entire
retina, (θ, φ) ∈ S.
Each receptive field implements an activation function,
δ : I × S → [0, 1]. Retina activation is the sum of receptive
field activations

RI(s) =
∑
Ik∈I

δ(Ik , s).

We factor the policy decision into individual votes by receptive
fields

π∗(s) =
1

RI(s)

∑
Ik∈I

δ(Ik , s) · πk

where each πk is a constant policy learned through stochastic
estimation methods.

Learning the Structure
Policy estimates encode
the positions of the
receptive fields (left).
Provides an alternative to
manifold learning (right).
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Lesioning at T=2000

Timestep

M
e

a
n

 A
ct

iv
a

tio
n

Simple
Robust

The left and right graphs show how reward increases with
training time and how this approach adapts to lesioning.


